Affiner votre recherche
Résultats 1-10 de 57
Response of soybean (Glycine max L.) seedlings to polystyrene nanoplastics: Physiological, biochemical, and molecular perspectives
2022
Surgun-Acar, Yonca
Micro and nanoplastics are new generation contaminants of global concern. It is important to evaluate the effects on edible products due to the presence of micro- and nano-sized plastics in the treated wastewater. A hydroponic experiment was carried out to explore the effect of polsytrene nanoplastics (PS-NPs; 20 nm) at different concentrations (0, 12.5, 25, and 50 mg L⁻¹) on Glycine max L. (soybean) seedlings for 7-days. In the current study, firstly the uptake of PS-NPs by Glycine max L. (soybean) roots were confirmed by laser confocal scanning microscope. Exposure to PS-NPs, negatively affected growth parameters and increased Fe, Zn and Mn contents in roots and leaves of soybean seedlings. PS-NPs treatments caused oxidative stress in soybean seedlings. The hydrogen peroxide and malondialdehyde contents, showed similar increase pattern in seedlings exposed to PS-NPs. Response to PS-NPs, the level of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase) and proline content were generally enhanced in roots and leaves of soybean. The expression level of stress-related genes examined in the study included CSD5, FSD3, APX1, and POD up-regulated in PS-NPs treated-soybean seedlings in a tissue specific manner. The results of the present study showed the adverse effects of PS-NPs on soybean seedlings, which may have important implications for the risk assessment of NPs on crop production and environmental safety.
Afficher plus [+] Moins [-]Newly-synthesized iron-oxide nanoparticles showed synergetic effect with citric acid for alleviating arsenic phytotoxicity in soybean
2022
Bhat, Javaid Akhter | Bhat, Masroor Ahmad | Abdalmegeed, Dyaaaldin | Yu, Deyue | Chen, Jian | Bajguz, Andrzej | Ahmad, Ajaz | Ahmad, Parvaiz
In the current investigation, we presented the success of the modified hydrothermal method for synthesizing the iron-oxide nanoparticles (Fe₂O₃-NPs) efficiently. These NPs were further characterized by using different techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM) micrographs, energy-dispersive X-ray spectroscopy (EDAX)/Mapping pattern, Raman Spectroscopy Pattern, ultra violet (UV) and Photoluminescence (PL). All these analyses revealed highly pure nature of Fe₂O₃-NPs with no internal defects, and suggested its application for plant growth improvement. Therefore, we further investigated the separate as well as combined effects of the Fe₂O₃-NPs and citric acid (CA) in the alleviation of arsenic (As) toxicity in the soybean (Glycine max L.), by evaluating the different plant growth and metabolic attributes. Results of our study revealed that As-induced growth inhibition, reduction of photosynthesis, water use efficiency (WUE), and reactive oxygen species (ROS) accumulation whereas application of the Fe₂O₃-NPs and CA significantly reversed all these adverse effects in soybean plants. Moreover, the As-stress induced malondialdehyde (MDA) and hydrogen peroxide (H₂O₂) production were partially reversed by the Fe₂O₃-NPs and CA in the As-stressed plants by 16% and 10% (MDA) and 29% and 12% (H₂O₂). This might have resulted due to the Fe₂O₃-NPs and CA induced activities of the antioxidant defense in plants. Overall, the Fe₂O₃-NPs and CA supplementation separately and in combination positively regulated the As tolerance in soybean; however, the effect of the combined application on the As tolerance was more profound relative to the individual application. These results suggested the synergetic effect of the Fe₂O₃-NPs and CA on the As-tolerance in soybean. However, in-depth mechanism underlying the defense crosstalk between the Fe₂O₃-NPs and CA needs to be further explored.
Afficher plus [+] Moins [-]Assessment of elevated CO2 concentrations and heat stress episodes in soybean cultivars growing in heavy metal polluted soils: Crop nutritional quality and food safety
2022
Blanco, Andrés | Högy, Petra | Zikeli, Sabine | Pignata, María L. | Rodriguez, Judith H.
The present study evaluated the interactive effects of global change and heavy metals on the growth and development of three soybean [Glycine max (L.) Merrill] cultivars and the consequences on yield and food safety. Soybean cultivars (Alim 3.14 from Argentina, and ES Mentor and Sigalia, from Germany) were grown until maturity in heavy metals polluted soils from the Rhine Valley, Germany, at two CO₂ concentrations (400 and 550 ppm) and heat stress (HS) episodes (9 days with 10 °C higher than maximum regular temperature) during the critical growth period in controlled environmental chambers. Different morpho-physiological parameters, heavy metal concentration in aerial organs, seed quality parameters, and toxicological index were recorded. The results showed that no morphological differences were observed related to CO₂. Moreover, Alim 3.14 showed the highest yield under control conditions, but it was more sensitive to climatic conditions than the German cultivars, especially to heat stress which strongly reduces the biomass of the fruits. Heavy metals concentration in soil exceeds the legislation limits for agricultural soils for Cd and Pb, with 1.6 and 487 mg kg⁻¹ respectively. In all cultivars, soybeans accumulated Cd in its aerial organs, and it could be translocated to fruits. Cd concentration in seeds ranged between 0.6 and 2.4 mg kg⁻¹, which exceed legislation limits and with toxicological risk to potential Chinese consumers. Pb levels were lower than Cd in seeds (0.03–0.17 mg kg⁻¹), and the accumulation were concentrated in the vegetative organs, with 93% of the Pb incorporated. Moreover, pods accumulated 11 times more Pb than seeds, which suggests that they act as a barrier to the passage of Pb to their offspring. These results evidence that soybean can easily translocate Cd, but not Pb, to reproductive organs. No regular patterns were observed in relation to climatic influence on heavy metal uptake.
Afficher plus [+] Moins [-]Episodes of high tropospheric ozone reduce nodulation, seed production and quality in soybean (Glycine max (L.) merr.) on low fertility soils
2021
Biancari, Lucio | Cerrotta, Clara | Menéndez, Analía I. | Gundel, Pedro E. | Martínez-Ghersa, M Alejandra
Driven by human activities, air pollution and soil degradation are threatening food production systems. Rising ozone in the troposphere can affect several physiological processes in plants and their interaction with symbiotic microorganisms. Plant responses to ozone may depend on both soil fertility and the ontogenetic stage in which they are exposed. In this work, we studied the effects of ozone episodes and soil fertility on soybean plants. We analysed soybean plant responses in the production of aboveground and belowground biomass, structural and functional attributes of rhizobia, and seed production and quality. The experiment was performed with plants grown in two substrates with different fertility (commercial soil, and soil diluted (50%, v/v) with sand). Plants were exposed to acute episodes of ozone during vegetative and reproductive stages. We observed that ozone significantly reduced belowground biomass (≈25%), nodule biomass (≈30%), and biological nitrogen fixation (≈21%). Plants exposed to ozone during reproductive stage growing in soil with reduced fertility had lower seed production (≈10% lower) and seed protein (≈12% lower). These responses on yield and quality can be explained by the observed changes in belowground biomass and nitrogen fixation. The negative impact of ozone on the symbiotic interaction with rhizobia, seed production and quality in soybean plants were greater in soils with reduced fertility. Our results indicate that food security could be at risk in the future if trends in ozone concentration and soil degradation processes continue to increase.
Afficher plus [+] Moins [-]The benefits of biochar: Enhanced cadmium remediation, inhibited precursor production of nitrous oxide and a short-term disturbance on rhizosphere microbial community
2021
Hou, Lijun | Zhang, Liping | Chen, Xiaotian | Li, Xuewen | ZengqiangZhang, | Lin, Yan Bing
Biochar has the potential to remediate heavy metals in agricultural soil and mitigate nitrous oxide (N₂O) emissions; however, the effects of biochar on heavy metal remediation, the soil microbial community and N₂O emissions are not completely understood. In this study, we conducted a pot experiment in which Glycine max L. (soybean) was cultivated in two cadmium (Cd)-contaminated soils (low, 3.14 mg kg⁻¹; high, 10.80 mg kg⁻¹) to investigate the effects of biochar on the bioremediation of Cd, N₂O emissions and the rhizosphere microbial community structure. The bioaccumulation of Cd in the plant shoots and roots increased with all biochar addition rates (0%, 1%, 5% and 10%); unexpectedly, the translocation capacity of Cd to the edible parts of the plant significantly decreased to 0.58 mg kg⁻¹, which was close to the edible threshold (0.4 mg kg⁻¹). The abundance and activities of functional marker genes of microbial nitrification (amoA) and denitrification (nirK, nirS and nosZ) were quantified with quantitative PCR, and we found that biochar addition reduced the precursor production of rhizoshpere N₂O by inhibiting the transcription of the nirK gene. In addition, the nitrogenase activity during anthesis (S) was significantly (P < 0.05) increased with 1% (v/v) biochar addition. Noticeably, biochar addition only changed the microbial community structure in the very first stage before eventually stabilize. This study highlighted that biochar has the potential ability to maintain the quality of agricultural crops, remediate Cd-contaminated soils and may help reduce N₂O emissions without disturbing the microbial community.
Afficher plus [+] Moins [-]Elevated carbon dioxide does not offset loss of soil carbon from a corn-soybean agroecosystem
2010
Moran, Kelly K. | Jastrow, Julie D.
The potential for storing additional C in U.S. Corn Belt soils – to offset rising atmospheric [CO2] – is large. Long-term cultivation has depleted substantial soil organic matter (SOM) stocks that once existed in the region's native ecosystems. In central Illinois, free-air CO2 enrichment technology was used to investigate the effects of elevated [CO2] on SOM pools in a conservation tilled corn–soybean rotation. After 5 and 6 y of CO2 enrichment, we investigated the distribution of C and N among soil fractions with varying ability to protect SOM from rapid decomposition. None of the isolated C or N pools, or bulk-soil C or N, was affected by CO2 treatment. However, the site has lost soil C and N, largely from unprotected pools, regardless of CO2 treatment since the experiment began. These findings suggest management practices have affected soil C and N stocks and dynamics more than the increased inputs from CO2-stimulated photosynthesis. Soil carbon from microaggregate-protected and unprotected fractions decreased in a conservation tilled corn–soybean rotation despite increases in primary production from exposure to atmospheric CO2 enrichment.
Afficher plus [+] Moins [-]Effects of plastic particles on germination and growth of soybean (Glycine max): A pot experiment under field condition
2021
Li, Bintao | Huang, Shan | Wang, Haoming | Liu, Mengjuan | Xue, Sha | Tang, Darrell | Cheng, Wanli | Fan, Tinglu | Yang, Xiaomei
Plastic residues have become a serious environmental problem in areas where agricultural plastic film are used intensively. Although numerous of studies have been done to assess its impacts on soil quality and crop yields, the understanding of meso-plastic particles effects on plant is still limited. In this study, low density polyethylene (PE) and biodegradable plastic (Bio) mulch film were selected to study the effects of meso-plastic debris on soybean germination and plant growth with the accumulation levels of 0%, 0.1%, 0.5% and 1% in soil (w: w, size ranging 0.5–2 cm) by a pot experiment under field condition. Results showed that the germination viability of soybean seeds was reduced to 82.39%, 39.44% and 26.06% in the treatments with 0.1%, 0.5% and 1% added plastic debris compared to the control (CK), respectively, suggesting that plastic residues in soil inhibit the viability of soybean seed germination. The plastic debris had a significant negative effect on plant height and culm diameter during the entire growth stage of soybean. Similarly, the leaf area at harvest was reduced by 1.97%, 6.86% and 11.53% compared to the CK in the treatments with 0.1%, 0.5% and 1% plastic debris addition, respectively. In addition, the total plant biomass under plastic addition was reduced in both the flowering and harvesting stages, compared to the CK. For the different type of plastic residues, plant height, leaf area and root/shoot ratio at group PE were significantly lower than those of groups treated by Bio. In conclusion, PE debris had a greater negative effects on plant height, culm diameter, leaf area and root/shoot ratio while Bio debris mainly showed the adverse effects on germination viability and root biomass especially at the flowering stage. Therefore, further research is required to elaborate plastic particles’ effects on different stages of crops and soil quality.
Afficher plus [+] Moins [-]Increase of apoplastic ascorbate induced by ozone is insufficient to remove the negative effects in tobacco, soybean and poplar
2019
Dai, Lulu | Feng, Zhaozhong | Pan, Xiaodong | Xu, Yansen | Li, Pin | Lefohn, Allen S. | Harmens, Harry | Kobayashi, Kazuhiko
Apoplastic ascorbate (ASCapo) is an important contributor to the detoxification of ozone (O3). The objective of the study is to explore whether ASCapo is stimulated by elevated O3 concentrations. The detoxification of O3 by ASCapo was quantified in tobacco (Nicotiana L), soybean (Glycine max (L.) Merr.) and poplar (Populus L), which were exposed to charcoal-filtered air (CF) and elevated O3 treatments (E-O3). ASCapo in the three species were significantly increased by E-O3 compared with the values in the filtered treatment. For all three species, E-O3 significantly increased the malondialdehyde (MDA) content and decreased light-saturated rate of photosynthesis (Asat), suggesting that high O3 has induced injury/damage to plants. E-O3 significantly increased redox state in the apoplast (redox stateapo) for all species, whereas no effect on the apoplastic dehydroascorbate (DHAapo) was observed. In leaf tissues, E-O3 significantly enhanced reduced-ascorbate (ASC) and total ascorbate (ASC+DHA) in soybean and poplar, but significantly reduced these in tobacco, indicating different antioxidative capacity to the high O3 levels among the three species. Total antioxidant capacity in the apoplast (TACapo) was significantly increased by E-O3 in tobacco and poplar, but leaf tissue TAC was significantly enhanced only in tobacco. Leaf tissue superoxide anion (O2•-) in poplar and hydrogen peroxide (H2O2) in tobacco and soybean were significantly increased by E-O3. The diurnal variation of ASCapo, with maximum values occurring in the late morning and lower values experienced in the afternoon, appeared to play an important role in the harmful effects of O3 on tobacco, soybean and poplar.
Afficher plus [+] Moins [-]Uptake, translocation and biotransformation of N-ethyl perfluorooctanesulfonamide (N-EtFOSA) by hydroponically grown plants
2018
Zhao, Shuyan | Zhou, Tao | Zhu, Lingyan | Wang, Bohui | Li, Ze | Yang, Liping | Liu, Lifen
N-ethyl perfluorooctane sulfonamide (N-EtFOSA) is an important perfluorooctanesulfonate (PFOS) precursor (PreFOS) which is used in sulfluramid. The present work studied the uptake, translocation and metabolism of N-EtFOSA in wheat (Triticum aestivum L.), soybean (Glycine max L. Merrill) and pumpkin (Cucurbita maxima L.) by hydroponic exposure. Except for parent N-EtFOSA, its metabolites of perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (PFOSA), PFOS, perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS) were detected in the roots and shoots of all the three plant species examined. This suggested that plant roots could take up N-EtFOSA from solutions efficiently, and translocate to shoots. A positive correlation was found between root concentration factors (RCFs) of N-EtFOSA and root lipid content. Much higher proportion of N-EtFOSA transformation products in plant tissues than in the solutions suggested that N-EtFOSA could be in vivo metabolized in plant roots and shoots to FOSAA, PFOSA and PFOS, and other additional shorter-chain perfluoroalkane sulfonates (PFSAs), including PFHxS and PFBS. The results suggested that plants had biotransformation pathways to N-EtFOSA that were different than those from microorganisms and animals. This study provides important information about the uptake and metabolism of PreFOSs in plants.
Afficher plus [+] Moins [-]C-offset and crop energy efficiency increase due industrial poultry waste use in long-term no-till soil minimizing environmental pollution
2021
Romaniw, Jucimare | de Moraes Sá, João Carlos | Lal, R. | de Oliveira Ferreira, Ademir | Inagaki, Thiago Massao | Briedis, Clever | Gonçalves, Daniel Ruiz Potma | Canalli, Lutécia Beatriz | Padilha, Alessandra | Bressan, Pamela Thaísa
Brazil is one of the major global poultry producers, and the organic waste generated by the chicken slaughterhouses can potentially be used as a biofertilizer in agriculture. This study was designed to test the hypothesis that continuous use of biofertilizer to the crops, substituting the use of mineral fertilizer promote C-offset for the soil and generate crop energy efficiency for the production system. Thus, the objectives of this study were to evaluate the effects of biofertilizer use alone or in combination with mineral fertilizer on soil organic carbon (SOC) stock, carbon dioxide (CO₂) mitigation, C-offset, crop energy efficiency and productivity, and alleviation of environmental pollution. The experiment was established in southern Brazil on a soil under 15 years of continuous no-till (NT). Experimental treatments were as follows: i) Control with no fertilizer application, ii) 100% use of industrial mineral fertilizer (Min-F); iii) 100% use of organic waste originated from poultry slaughterhouses and hereinafter designated biofertilizer (Bio-F), and iv) Mixed fertilizer equivalent to the use of 50% mineral fertilizer + 50% of biofertilizer (Mix-F). Effects of experimental treatments were assessed for the crop sequence based on bean (Phaseolus vulgaris), soybean (Glycine max) and corn (Zea mays) in the summer and wheat (Triticum aestivum) and black oat (Avena strigosaSchreb) in the winter composing two crops per year, as follow: bean/wheat-soybean/black oat-corn/wheat-soybean/black oat-corn/wheat-bean. The continuous use of Bio-F treatment significantly increased the index of crop energy efficiency. It was higher than that of control, and increased it by 25.4 Mg CO₂eq ha⁻¹ over that of Min-F treatment because of higher inputs of crop biomass-C into the system. Further, continuous use of Bio-F resulted in a significantly higher CO₂eq stock and offset than those for Min-F treatment. A positive relationship between the C-offset and the crop energy efficiency (R² = 0.71, p < 0.001) indicated that the increase of C-offset was associated with the increase of energy balance and the amount of SOC sequestered. The higher energy efficiency and C-offset by application of Bio-F indicated that the practice of crop bio fertilization with poultry slaughterhouse waste is a viable alternative for recycling and minimizing the environmental impacts.
Afficher plus [+] Moins [-]