Affiner votre recherche
Résultats 1-10 de 44
Enhanced removal of sulfur-containing organic pollutants from actual wastewater by biofilm reactor: Insights of sulfur transformation and bacterial metabolic traits Texte intégral
2022
Zhang, Wei | Wu, Yang | Wu, Jing | Zheng, Xiong | Chen, Yinguang
Sulfur-containing organic pollutants in wastewater could threaten human health due to their high malodor and toxicity, and their conversion processes are more complex than inorganic sulfur compounds. Membrane aerated biofilm reactor (MABR), as a novel and environmentally-friendly biofilm-based technology, is able to remove inorganic sulfur in synthetic wastewater. However, it is unknown how sulfur-containing organic pollutants in actual wastewater are transformed in MABR system. This work demonstrated the feasibility of MABR to eliminate sulfur-containing organic pollutants in actual wastewater, and the removal efficiency could be reached at approximately 100%. Meanwhile, over 70% of sulfur-containing organic contaminants were transformed to SO₄²⁻ during the long-term operation. Further analysis indicated that the functional bacteria that participated in sulfur transformation and carbohydrates degradation (e.g., Chujaibacter, Microscillaceaesp., and Thiobacillus) were evidently enriched when treating actual wastewater. Moreover, the critical metabolic pathways (e.g., sulfur metabolism, glycolysis metabolism, and pyruvate metabolism), and the corresponding genetic expressions (e.g., nrrA, tauA, tauC, sorA, and SUOX) were evidently up-regulated during long-term operation, which was beneficial for the transformation of sulfur-containing organic pollutants in actual wastewater by MABR. This work would expand the application of MABR for treating the actual sulfur-containing organic wastewater and provide an in-depth understanding of the organic sulfur transformation in MABR.
Afficher plus [+] Moins [-]Oxygen sensors mediated HIF-1α accumulation and translocation: A pivotal mechanism of fine particles-exacerbated myocardial hypoxia injury Texte intégral
2022
Zhang, Ze | Wu, Liu | Cui, Tenglong | Ahmed, Rifat Zubair | Yu, Haiyi | Zhang, Rong | Wei, Yanhong | Li, Daochuan | Zheng, Yuxin | Chen, Wen | Jin, Xiaoting
Epidemiological studies have demonstrated a strong association of ambient fine particulate matter (PM₂.₅) exposure with the increasing mortality by ischemic heart disease (IHD), but the involved mechanisms remain poorly understood. Herein, we found that the chronic exposure of real ambient PM₂.₅ led to the upregulation of hypoxia-inducible factor-1 alpha (HIF-1α) protein in the myocardium of mice, accompanied by obvious myocardial injury and hypertrophy. Further data from the hypoxia-ischemia cellular model indicated that PM₂.₅-induced HIF-1α accumulation was responsible for the promotion of myocardial hypoxia injury. Moreover, the declined ATP level due to the HIF-1α-mediated energy metabolism remodeling from β-oxidation to glycolysis had a critical role in the PM₂.₅-increased myocardial hypoxia injury. The in-depth analysis delineated that PM₂.₅ exposure decreased the binding of prolyl hydroxylase domain 2 (PHD2) and HIF-1α and subsequent ubiquitin protease levels, thereby leading to the accumulation of HIF-1α. Meanwhile, factor-inhibiting HIF1 (FIH1) expression was down-regulated by PM₂.₅, resulting in the enhanced translocation of HIF-1α to the nucleus. Overall, our study provides valuable insight into the regulatory role of oxygen sensor-mediated HIF-1α stabilization and translocation in PM-exacerbated myocardial hypoxia injury, we suggest this adds significantly to understanding the mechanisms of haze particles-caused burden of cardiovascular disease.
Afficher plus [+] Moins [-]Ammonium detoxification mechanism of ammonium-tolerant duckweed (Landoltia punctata) revealed by carbon and nitrogen metabolism under ammonium stress Texte intégral
2021
Tian, Xueping | Fang, Yang | Jin, Elaine | Yi, Zhuolin | Li, Jinmeng | Du, Anping | He, Kaize | Huang, Yuhong | Zhao, Hai
In this work, the ammonium-tolerant duckweed Landoltia punctata 0202 was used to study the effect of ammonium stress on carbon and nitrogen metabolism and elucidate the detoxification mechanism. The growth status, protein and starch content, and activity of nitrogen assimilation enzymes were determined, and the transcriptional levels of genes involved in ion transport and carbon and nitrogen metabolism were investigated. Under high ammonium stress, the duckweed growth was inhibited, especially when ammonium was the sole nitrogen source. Ammonium might mainly enter cells via low-affinity transporters. The stimulation of potassium transport genes suggested sufficient potassium acquisition, precluding cation deficiency. In addition, the up-regulation of ammonium assimilation and transamination indicated that excess ammonium could be incorporated into organic nitrogen. Furthermore, the starch content increased from 3.97% to 16.43% and 26.02% in the mixed-nitrogen and ammonium-nitrogen groups, respectively. And the up-regulated starch synthesis, degradation, and glycolysis processes indicated that the accumulated starch could provide sufficient carbon skeletons for excess ammonium assimilation. The findings of this study illustrated that the coordination of carbon and nitrogen metabolism played a vital role in the ammonium detoxification mechanism of duckweeds.
Afficher plus [+] Moins [-]Influence of fuel oil on Platymonas helgolandica: An acute toxicity evaluation to amino acids Texte intégral
2021
Li, Na | Liu, Yu | Liang, Zhengyu | Lou, Yadi | Liu, Yuxin | Zhao, Xinda | Wang, Guoguang
It is highly likely that the toxicity of water accommodated fractions (WAF) will influence marine microalgae, and consequently lead to potential risk for the marine ecological environment. However, it was often neglected whether WAF can influence the transformation of relative compounds in organisms. The metabolism of amino acids (AAs) can be used to track physiological changes in microalgae because amino acids are the basis of proteins and enzymes. In this study, using marine Chlorophyta Platymonas helgolandica as the test organism, the effects of different concentrations of WAF on AA compositions and stable carbon isotope ratios (δ¹³C) of individual AAs of Platymonas helgolandica were investigated. The results showed that the WAF of #180 fuel oil had an obvious suppressing effect on the growth and chlorophyll a content of microalgae. The growth inhibitory rate at 96 h was 80.66% at a WAF concentration of 0.50 mg L⁻¹ compared with the control. Furthermore, seven among the 16 AAs, including alanine, cysteine, proline, aspartic acid, lysine, histidine and tyrosine, had relatively high abundance. Under the glycolysis pathway, the cysteine abundance was higher than control, meaning that the biosynthesized pathway of alanine through cysteine as a precursor could be damaged. Phosphoenolpyruvate (PEP) was an important synthesis precursor of alanine (leucine) and aromatic AA family (Phenylalanine and tyrosine), and played an important role in δ¹³CAAₛ fractionation under the WAF stress. Under the TCA pathway, to protect cell metabolism activities under WAF stress, the δ¹³C value of threonine and proline abundance in microalgae with the increase in WAF stress. Therefore, δ¹³CAAₛ fractionation can be used as a novel method for toxicity evaluation of WAF on future.
Afficher plus [+] Moins [-]A metabolomics strategy to assess the combined toxicity of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs) Texte intégral
2018
Wang, Feidi | Zhang, Haijun | Geng, Ningbo | Ren, Xiaoqian | Zhang, Baoqin | Gong, Yufeng | Chen, Jiping
The combined toxicity of mixed chemicals is usually evaluated according to several specific endpoints, and other potentially toxic effects are disregarded. In this study, we provided a metabolomics strategy to achieve a comprehensive understanding of toxicological interactions between mixed chemicals on metabolism. The metabolic changes were quantified by a pseudotargeted analysis, and the types of combined effects were quantitatively discriminated according to the calculation of metabolic effect level index (MELI). The metabolomics strategy was used to assess the combined effects of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs) on the metabolism of human hepatoma HepG2 cells. Our data suggested that exposure to a combination of PAHs and SCCPs at human internal exposure levels could result in an additive effect on the overall metabolism, whereas diverse joint effects were observed on various metabolic pathways. The combined exposure could induce a synergistic up-regulation of phospholipid metabolism, an additive up-regulation of fatty acid metabolism, an additive down-regulation of tricarboxylic acid cycle and glycolysis, and an antagonistic effect on purine metabolism. SCCPs in the mixture acted as the primary driver for the acceleration of phospholipid and fatty acid metabolism. Lipid metabolism disorder caused by exposure to a combination of PAHs and SCCPs should be an important concern for human health.
Afficher plus [+] Moins [-]Effect of organochlorine pesticides exposure on the maize root metabolome assessed using high-resolution magic-angle spinning 1H NMR spectroscopy Texte intégral
2016
1H-HRMAS NMR-based metabolomics was used to better understand the toxic effects on maize root tips of organochlorine pesticides (OCPs), namely lindane (γHCH) and chlordecone (CLD). Maize seedlings were exposed to 2.5 μM γHCH (mimicking basic environmental contaminations) for 7 days and compared to 2.5 μM CLD and 25 μM γHCH for 7 days (mimicking hot spot contaminations). The 1H-HRMAS NMR-based metabolomic profiles provided details of the changes in carbohydrates, amino acids, tricarboxylic acid (TCA) cycle intermediates and fatty acids with a significant separation between the control and OCP-exposed root tips. First of all, alterations in the balance between glycolysis/gluconeogenesis were observed with sucrose depletion and with dose-dependent fluctuations in glucose content. Secondly, observations indicated that OCPs might inactivate the TCA cycle, with sizeable succinate and fumarate depletion. Thirdly, disturbances in the amino acid composition (GABA, glutamine/glutamate, asparagine, isoleucine) reflected a new distribution of internal nitrogen compounds under OCP stress. Finally, OCP exposure caused an increase in fatty acid content, concomitant with a marked rise in oxidized fatty acids which could indicate failures in cell integrity and vitality. Moreover, the accumulation of asparagine and oxidized fatty acids with the induction of LOX3 transcription levels under OCP exposure highlighted an induction of protein and lipid catabolism. The overall data indicated that the effect of OCPs on primary metabolism could have broader physiological consequences on root development. Therefore, 1H-HRMAS NMR metabolomics is a sensitive tool for understanding molecular disturbances under OCP exposure and can be used to perform a rapid assessment of phytotoxicity.
Afficher plus [+] Moins [-]GCN5-mediated PKM2 acetylation participates in benzene-induced hematotoxicity through regulating glycolysis and inflammation via p-Stat3/IL17A axis Texte intégral
2022
Zhang, Wei | Guo, Xiaoli | Ren, Jing | Chen, Yujiao | Wang, Jingyu | Gao, Ai
Benzene is a common environmental carcinogen that induces leukemia. Studies suggest that metabolic disorder has a relationship with the toxicity of benzene. Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. However, the upstream and downstream regulatory mechanisms of PKM2 in benzene-induced hematotoxicity and the therapeutic effects of targeting PKM2 in vivo are unclear. This study aims to provide insights into the new mechanism of benzene-induced hematotoxicity and reveal the therapeutic significance of targeting PKM2. Herein, we demonstrated that PKM2-dependent glycolysis contributes to benzene-induced hematotoxicity by regulating inflammation reaction. Mechanistically, acetylated proteomics revealed that 1,4-benzoquinone (1,4-BQ) induced acetylation of PKM2 at position K66, and this modification contributed to the increase of PKM2 expression and can be inhibited by inhibition of acetyltransferase GCN5. Meanwhile, the elevated PKM2 was shown to prompt the activation of nuclear phosphorylated Stat3 (p-Stat3) and IL17A. Clinically, pharmacological inhibition of PKM2 alleviated the blood toxicity induced by benzene, which was mainly characterized by an increase in routine blood parameters and improvement of hematopoietic imbalance. Besides, elevated PKM2 is a promising biomarker in people occupationally exposed to benzene. Overall, we identified PKM2/p-Stat3/IL-17A axis participates in the hematotoxicity of benzene, and targeting PKM2 has certain therapeutic implications in hematologic diseases.
Afficher plus [+] Moins [-]Lactic acid bacteria induce phosphate recrystallization for the in situ remediation of uranium-contaminated topsoil: Principle and application Texte intégral
2022
He, Zhanfei | Dong, Lingfeng | Zhang, Keqing | Zhang, Daoyong | Pan, Xiangliang
Uranium (U) contamination often occurs in the topsoil (arable layer), and is a serious threat to crop growth. However, conventional microbial reduction methods are sensitive to oxygen and cannot be used to treat aerobic topsoils. In this study, phosphate-solubilizing microorganisms (PSM) were isolated from U-contaminated topsoil and used for soil remediation. Microbial metabolites and products were analyzed, and the pathways and mechanisms of PSM immobilization were revealed. The results showed that strain PSM8 had the highest phosphate-solubilizing capacity (dissolved P was 208 ± 5 mg/L) and the highest U removal rate (97.3 ± 0.1%). Multi-technical analyses indicated that bacterial surface functional groups adsorbed (UO₂)²⁺ ions on the cell surface, glycolysis produced 3–10 mg/L of lactic acid (pH 4.7–6.0), and lactic acid solubilized Ca₃(PO₄)₂ to form stable chernikovite (a type of uranyl phosphate) on the cell surface. The coupled application of Ca₃(PO₄)₂ and strain PSM8 significantly reduced the bioavailability of soil U (62 ± 11%), converting U from the exchangeable to the residual phase and P from the steady to the available form. In addition, pot experiments showed that soil remediation promoted crop growth and significantly reduced U uptake and toxicity to photosynthetic systems. These findings demonstrate that PSM and Ca₃(PO₄)₂ are good coupled fertilizers for U-contaminated agricultural soil.
Afficher plus [+] Moins [-]Traffic-related air pollution and endurance exercise: Characterizing non-targeted serum metabolomics profiling Texte intégral
2021
Cruz, Ramon | Pasqua, Leonardo | Silveira, André | Damasceno, Mayara | Matsuda, Monique | Martins, Marco | Marquezini, Mônica V. | Lima-Silva, Adriano Eduardo | Saldiva, Paulo H. N. (Paulo Hilário Nascimento) | Bertuzzi, Romulo
Although the exposure to traffic-related air pollution (TRAP) has emerged as one of main problem worldwide to inhabitants’ health in urban centers, its impact on metabolic responses during exercise is poorly understood. The aim of study was to characterize the profile of non-target serum metabolomics during prolonged exercise performed under TRAP conditions. Ten healthy men completed two 90 min constant-load cycling trials under conditions of either TRAP or filtered air. Experimental trials were performed in a chamber located on an avenue with a high volume of vehicle traffic. Blood samples were taken at 30 min, 60 min, and 90 min of exercise. Based on Nuclear Magnetic Resonance metabolomics, the non-target analysis was used to assess the metabolic profile. Twelve, 16 and 18 metabolites were identified as discriminants. These were: at 30 min of exercise, the coefficient of determination (R²) 0.98, the predictive relevance, (Q²) 0.12, and the area under the curve (AUC) 0.91. After 60 min of exercise: (R²: 0.99, Q²: 0.09, AUC: 0.94); and at 90 min of exercise (R²: 0.91, Q²: <0.01, AUC: 0.89), respectively. The discriminant metabolites were then considered for the target analysis, which demonstrated that the metabolic pathways of glycine and serine metabolism (p = 0.03) had been altered under TRAP conditions at 30 min of exercise; arginine and proline metabolism (p = 0.04) at 60 min of exercise; and glycolysis (p = 0.05) at 90 min of exercise. The present results suggest that exposure to TRAP during prolonged exercise leads to a significant change in metabolomics, characterized by a transitional pattern and lastly, impairs the glucose metabolism.
Afficher plus [+] Moins [-]Toxicities of three metal oxide nanoparticles to a marine microalga: Impacts on the motility and potential affecting mechanisms Texte intégral
2021
Du, Xueying | Zhou, Weishang | Zhang, Weixia | Sun, Shuge | Han, Yu | Tang, Yu | Shi, Wei | Liu, Guangxu
With the fast growth of the production and application of engineered nanomaterials (ENMs), nanoparticles (NPs) that escape into the environment have drawn increasing attention due to their ecotoxicological impacts. Motile microalgae are a type of primary producer in most ecosystems; however, the impacts of NPs on the motility of microalgae have not been studied yet. So the toxic impacts of three common metal oxide NPs (nTiO₂, nZnO, and nFe₂O₃) on swimming speed and locomotion mode of a marine microalgae, Platymonas subcordiformis, were investigated in this study. Our results demonstrated that both the velocity and linearity (LIN) of swimming were significantly decreased after the exposure of P. subcordiformis to the tested NPs. In addition, the obtained data indicate that NPs may suppress the motility of P. subcordiformis by constraining the energy available for swimming, as indicated by the significantly lower amounts of intracellular ATP and photosynthetic pigments and the lower activities of enzymes catalyzing glycolysis. Incubation of P. subcordiformis with the tested NPs generally resulted in the overproduction of reactive oxygen species (ROS), aggravation of lipid peroxidation, and induction of antioxidant enzyme activities, suggesting that imposing oxidative stress, which may impair the structural basis for swimming (i.e. the membrane of flagella), could be another reason for the observed motility suppression. Moreover, NP exposure led to significant reductions in the cell viability of P. subcordiformis, which may be due to the disruption of the energy supply (i.e., photosynthesis) and ROS-induced cellular damage. Our results indicate that waterborne NPs may pose a great threat to motile microalgae and subsequently to the health and stability of the marine ecosystem.
Afficher plus [+] Moins [-]