Affiner votre recherche
Résultats 1-10 de 206
First Report of Enterobacter hormaechei Isolated from Agricultural Soil in the Biodegradation of Glyphosate
2024
Badani, Hadjer | Haddad, Fatma Zohra | ElOuissi, AbdElKader
Several studies have explored the utilization of soil microorganisms, to address the environmental issues associated with glyphosate use and enhance crop yields. In our investigation, screening on Agar plate and broth medium Luria Bertani was carried out after isolating bacterial strains from rhizospheric agricultural soil in Mascara, Algeria, to biodegrade glyphosate, following that by testing the Plant Growth-Promoting Rhizobacteria and evaluate the effects of glyphosate on these proprieties. Our findings indicate that five bacterial strains exhibited growth in the presence of glyphosate concentrations up to 25 mg/ml, beyond this concentration the strains have developed tolerance. Following a partial examination of the 16S rRNA sequences, the bacterial strains were identified as belonging to the genus of Enterobacter. After 10 days of incubation with the glyphosate, Phosphate solubilization decreased in broth and agar Pikovskaya medium and the bacterial strains synthetized less of indole-3-acetic acid compared to the control, indicating the impact of glyphosate on these outcomes, high concentration of glyphosate inhibited nitrogen fixation, and various doses of glyphosate were found to restrict the growth of biofilms in these strains. The results of HPLC examination of secondary metabolites revealed that the primary degradation products of glyphosate in all strains were Sarcosine and Glycine. So, it seemed that the strain could both biodegrade glyphosate and use it for growth ,while also possessing rhizobacteria properties that promote plant development, enabling the use of the strains in the bioremediation of glyphosate-contaminated soils.
Afficher plus [+] Moins [-]Glyphosate in the environment. Review article.
1988
Carlisle S.M. | Trevors J.T.
Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops.
2010
Mamy , Laure (INRA , Versailles (France). UR 0251 Physico-chimie et Ecotoxicologie des Sols d'agrosystèmes contaminés) | Gabrielle , Benoit (INRA , Thiverval-Grignon (France). UMR 1091 Environnement et Grandes Cultures) | Barriuso Benito , Enrique (INRA , Thiverval-Grignon (France). UMR 1091 Environnement et Grandes Cultures)
The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops. The impacts of herbicide applications on glyphosate-tolerant crops could be higher than expected due to the accumulation of a metabolite of glyphosate in soils.
Afficher plus [+] Moins [-]Continuous low-level dietary exposure to glyphosate elicits dose and sex-dependent synaptic and microglial adaptations in the rodent brain.
2024
Cresto, Noemie | Courret, Margot | Génin, Athénaïs | Pauline Martin, Céline Marie | Bourret, Julie | Sakkaki, Sophie | de Bock, Frederic | Janvier, Alicia | Polizzi, Arnaud | Payrastre, Laurence | Ellero-Simatos, Sandrine | Audinat, Etienne | Perroy, Julie | Marchi, Nicola | Institut de Génomique Fonctionnelle (IGF) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | ToxAlim (ToxAlim) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Toxicologie Intégrative & Métabolisme (ToxAlim-TIM) ; ToxAlim (ToxAlim) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ANR-19-CE34-0007,GLYFLORE,Impact of a chronic dietary exposure to low-doses of glyphosate on the gut microbiota and microbiota-associated physiological functions (metabolism, intestinal immunity, brain structures and behavior)(2019) | ANR-17-CE34-0005,HepatoBrain,Mélange de pesticides et axe foie-cerveau : implication des récepteurs aux xénobiotiques(2017) | ANR-22-CE17-0061,CEST-Focus,Biomarqueurs de type CEST pour délimiter la zone épileptique(2022) | ANR-19-CE16-0018,MicroSENSO,Les microglies dans l'assemblage des circuits inhibiteurs pendant les périodes critiques sensorielles(2019) | ANR-21-CE17-0031,EPI-CATCHER,Nouvelles modalités d'imagerie et de spectroscopie GABA pour localiser la zone épileptique(2021)
International audience | Prolonged exposure to low levels of dietary contaminants is a context in modern life that could alter organ physiology gradually. Here, we aimed to investigate the impact of continuous exposure to acceptable daily intake (ADI) and non-observable adverse effect level (NOAEL) of glyphosate from gestation to adulthood using C57BL/6J mice and incorporating these levels into their food pellets. From adulthood, we analyzed neurophysiological and neuro-glia cellular adaptations in male and female animals. Using ex-vivo hippocampal slice electrophysiology, we found a reduced efficacy of Schaffer collateral-to-CA1 excitatory synapses in glyphosate-exposed dietary conditions, with ADI and NOAEL dose-dependent effects. Short-term facilitation of excitatory synaptic transmission was specifically increased in NOAEL conditions, with a predominant influence in males, suggesting a reduced probability of neurotransmitter release. Long-term synaptic potentiation (LTP) was decreased in NOAEL-exposed mice. Next, we explore whether these neurophysiological modifications are associated with neuro-glia changes in the somatosensory cortex and hippocampus. High-resolution confocal microscopy analyses unveil a dose-dependent increased density of excitatory Vglut1+ Homer1+ synapses. Microglial Iba1+ cells displayed a shortening of their ramifications, a sign of cellular reactivity that was more pronounced in males at NOAEL levels. The morphology of GFAP+ astrocytes was generally not modified. Finally, we asked whether mouse-specific cross-correlations exist among all data sets generated. This examination included the novel object recognition (NOR) test performed before ex vivo functional and immunohistochemical examinations. We report a negative linear regression between the number of synapses and NOR or LTP maintenance when plotting ADI and NOAEL datasets. These results outline synaptic and microglial cell adaptations resulting from prenatal and continuous dietary low levels of glyphosate, discernible in, but not limited to, adult males exposed to the NOAEL. We discuss the significance of these findings to real-world consumer situations and long-term brain resilience.
Afficher plus [+] Moins [-]Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (Vosne-Romanée, 21 France)
2005
Landry, David | Dousset, Sylvie | Fournier, Jean-Claude | Andreux, Francis | Microbiologie ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB) | Biogéosciences [UMR 5561] [Dijon] ; Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)
International audience | Some drinking water reservoirs under the vineyards of Burgundy are contaminated with herbicides. Thus the effectiveness of alternative soil management practices, such as grass cover, for reducing the leaching of glyphosate and its metabolite, AMPA, through soils was studied. The leaching of both molecules was studied in structured soil columns under outdoor conditions for 1 year. The soil was managed under two vineyard soil practices: a chemically treated bare calcosol, and a vegetated calcosol. After 680 mm of rainfall, the vegetated calcosol leachates contained lower amounts of glyphosate and AMPA (0.02% and 0.03%, respectively) than the bare calcosol leachates (0.06% and 0.15%, respectively). No glyphosate and only low amounts of AMPA (<0.01%) were extracted from the soil. Glyphosate, and to a greater extent, AMPA, leach through the soils; thus, both molecules may be potential contaminants of groundwater. However, the alternative soil management practice of grass cover could reduce groundwater contamination by the pesticide.Glyphosate and AMPA leached in greater amounts through a chemically treated bare calcosol than through a vegetated calcosol.Glyphosate and AMPA leached in greater amounts through a chemically treated bare calcosol than through a vegetated calcosol.
Afficher plus [+] Moins [-]Effects of glyphosate and a commercial formulation Roundup® exposures on maturation of Xenopus laevis oocytes
2019
Slaby, Sylvain | Titran, Pauline | Marchand, Guillaume | Hanotel, Julie | Lescuyer, Arlette | Lepretre, Alain | Bodart, Jean-Francois | Marin, Matthieu | Lemiere, Sebastien | Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 (LGCgE) ; Université d'Artois (UA)-Université de Lille-Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF) ; Université de Lille-Centre National de la Recherche Scientifique (CNRS) | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL)
International audience | Pesticides are often found at high concentrations in small ponds near agricultural field where amphibians are used to live and reproduce. Even if there are many studies on the impacts of phytopharmaceutical active ingredients in amphibian toxicology, only a few are interested in the earlier steps of their life cycle. While their populations are highly threatened with extinction. The aim of this work is to characterize the effects of glyphosate and its commercial formulation Roundup® GT Max on the Xenopus laevis oocyte maturation which is an essential preparation for the laying and the fertilization. Glyphosate is an extensively used herbicide, not only known for its effectiveness but also for its indirect impacts on non-target organisms. Our results showed that exposures to both forms of glyphosate delayed this hormone-dependent process and were responsible for spontaneous maturation. Severe and particular morphogenesis abnormalities of the meiotic spindle were also observed. The MAPK pathway and the MPF did not seem to be affected by exposures. The xenopus oocyte is particularly affected by the exposures and appears as a relevant model for assessing the effects of environmental contamination.
Afficher plus [+] Moins [-]13C assimilation as well as functional gene abundance and expression elucidate the biodegradation of glyphosate in a field experiment
2022
Wirsching, Johannes | Wimmer, Benedikt | Ditterich, Franziska | Schlögl, Johanna | Martin-Laurent, Fabrice | Huhn, Carolin | Haderlein, Stefan | Kandeler, Ellen | Poll, Christian
Glyphosate (N-phosphonomethylglycine; GLP) and its main metabolite AMPA (aminomethylphosphonic acid), are frequently detected in relatively high concentrations in European agricultural topsoils. Glyphosate has a high sorption affinity, yet it can be detected occasionally in groundwater. We hypothesized that shrinkage cracks occurring after dry periods could facilitate GLP transport to greater depths where subsoil conditions slow further microbial degradation. To test this hypothesis, we simulated a heavy rainfall event (HRE) on a clay-rich arable soil. We applied 2.1 kg ha⁻¹ of 100% ¹³C₃, ¹⁵N-labeled GLP one day before the simulated rainfall event. Microbial degradation of translocated GLP over a 21-day period was assessed by quantifying ¹³C incorporation into phospholipid fatty acids. Microbial degradation potential and activity were determined by quantifying the abundance and expression of functional genes involved in the two known degradation pathways of GLP; to AMPA (goxA) or sarcosine (sarc). We confirmed that goxA transcripts were elevated in the range of 4.23 x 10⁵ copy numbers g⁻¹ soil only one day after application. The increase in AMPA associated with a rise in goxA transcripts and goxA-harboring microorganisms indicated that the degradation pathway to AMPA dominated. Based on ¹³C-enrichment 3 h after the HRE, fungi appeared to initiate glyphosate degradation. At later time points, Gram⁺-bacteria proved to be the main degraders due to their higher ¹³C-incorporation. Once GLP reached the subsoil, degradation continued but more slowly. By comparing GLP distribution and its microbial degradation in macropores and in the bulk soil, we demonstrated different time- and depth-dependent GLP degradation dynamics in macropores. This indicates the need for field studies in which soil properties relevant to GLP degradation are related to limiting environmental conditions, providing a realistic assessment of GLP fate in soils.
Afficher plus [+] Moins [-]Xenobiotic pollution affects transcription of antibiotic resistance and virulence factors in aquatic microcosms
2022
Zhang, Zhenyan | Wang, Yan | Chen, Bingfeng | Lei, Chaotang | Yu, Yitian | Xu, Nuohan | Zhang, Qi | Wang, Tingzhang | Gao, Wenwen | Lu, Tao | Gillings, Michael | Qian, Haifeng
Antibiotic resistance genes (ARGs) and virulence factors (VFs) are critical threats to human health. Their abundance in aquatic ecosystems is maintained and enhanced via selection driven by environmental xenobiotics. However, their activity and expression in these environments under xenobiotic stress remains unknown. Here ARG and VF expression profiles were examined in aquatic microcosms under ciprofloxacin, glyphosate and sertraline hydrochloride treatment. Ciprofloxacin increased total expression of ARGs, particularly multidrug resistance genes. Total expression of ARGs and VFs decreased significantly under glyphosate and sertraline treatments. However, in opportunistic human pathogens, these agents increased expression of both ARGs and VFs. Xenobiotic pollutants, such as the compounds we tested here, have the potential to disrupt microbial ecology, promote resistance, and increase risk to human health. This study systematically evaluated the effects of environmental xenobiotics on transcription of ARGs and VFs, both of which have direct relevance to human health. Transcription of such genes has been overlooked in previous studies.
Afficher plus [+] Moins [-]Pesticides in a warmer world: Effects of glyphosate and warming across insect life stages
2022
Stahlschmidt, Z.R. | Whitlock, J. | Vo, C. | Evalen, P. | D, Bui
Glyphosate (GLY) is a broad-spectrum herbicide that is the most commonly applied pesticide in terrestrial ecosystems in the U.S. and, potentially, worldwide. However, the combined effects of warming associated with climate change and exposure to GLY and GLY-based formulations (GBFs) on terrestrial animals are poorly understood. Animals progress through several life stages (e.g., embryonic, larval, and juvenile stages) that may exhibit different sensitivities to stressors. Therefore, we factorially manipulated temperature and GLY/GBF exposure in the variable field cricket (Gryllus lineaticeps) during two life stages—nymphal development and adulthood—and examined key animal traits, such as developmental rate, body size, food consumption, reproductive investment, and lifespan. A thermal environment simulating future climate warming obligated several costs to fitness-related traits. For example, warming experienced during nymphal development reduced survival, adult body mass and size, and investment into flight capacity and reproduction. Warming experienced by adults reduced lifespan and growth rate. Alternatively, the effects of GBF exposure were more subtle, often context-dependent (e.g., effects were only detected in one sex or temperature regime), and were stronger during adult exposure relative to exposure during development. There was evidence of additive costs of warming and GBF exposure to rates of feeding and growth in adults. Yet, the negative effect of GBF exposure to adult lifespan did not occur in warming conditions, suggesting that ongoing climate change may obscure some of the costs of GBFs to non-target organisms. The effects of GLY alone (i.e., in the absence of proprietary surfactants found in commercial formulations) were non-existent. Animals will be increasingly exposed to warming and GBFs, and our results indicate that GBF exposure and warming can entail additive costs for an animal taxon (insects) that plays critical roles in terrestrial ecosystems.
Afficher plus [+] Moins [-]Monitoring of glyphosate-DNA interaction and synergistic genotoxic effect of glyphosate and 2,4-dichlorophenoxyacetic acid using an electrochemical biosensor
2021
Congur, Gulsah
Glyphosate (GLY) is a broad-spectrum herbicide used worldwide to control broadleaf sedge, and grass weeds to control non-specific vegetation. Although it was evaluated as non-toxic agent in 20ᵗʰ century, its carcinogenic and genotoxic potential has being intensively investigated all over the world in the last decade. Moreover, the combination of GLY and 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely applied. Although genotoxicity of GLY has been evaluated in vivo studies, there is no report in the literature for the monitoring of in vitro biointeraction of GLY and double stranded DNA, or how effect the combination of GLY and 2,4-D onto DNA. Herein, an electrochemical biosensor platform was developed for detection of the pesticide-DNA interaction by using disposable pencil graphite electrodes (PGEs). First, voltammetric detection of the interaction between GLY and DNA was investigated and the electrochemical characterization of the interaction was achieved. Taking a step further, the synergistic genotoxic effect of the mixture of GLY and 2,4-dichlorophenoxyacetic acid (2,4-D) or the mixture of their herbicide forms onto DNA could be monitored. This effect was concentration dependent, and the herbicide of GLY or the use of mixture of herbicides of GLY and 2,4-D had more genotoxic effect than analytical grade of the active molecules, GLY and 2,4-D. The single-use PGEs provided to fabricate robust, eco-friendly and time saver recognition platform for monitoring of herbicide-DNA interaction with the sensitive and reliable results. It is expected that this study will lead to be designed miniaturized lab-on-a chip platforms for on-line analysis of the pesticide-nucleic acid interactions.
Afficher plus [+] Moins [-]