Affiner votre recherche
Résultats 1-10 de 22
The effects of lead sources on oral bioaccessibility in soil and implications for contaminated land risk management Texte intégral
2015
Palmer, Sherry | McIlwaine, Rebekka | Ofterdinger, Ulrich | Cox, Siobhan F. | McKinley, Jennifer M. | Doherty, Rory | Wragg, J. (Joanna) | Cave, Mark
Lead (Pb) is a non-threshold toxin capable of inducing toxic effects at any blood level but availability of soil screening criteria for assessing potential health risks is limited. The oral bioaccessibility of Pb in 163 soil samples was attributed to sources through solubility estimation and domain identification. Samples were extracted following the Unified BARGE Method. Urban, mineralisation, peat and granite domains accounted for elevated Pb concentrations compared to rural samples. High Pb solubility explained moderate-high gastric (G) bioaccessible fractions throughout the study area. Higher maximum G concentrations were measured in urban (97.6 mg kg−1) and mineralisation (199.8 mg kg−1) domains. Higher average G concentrations occurred in mineralisation (36.4 mg kg−1) and granite (36.0 mg kg−1) domains. Findings suggest diffuse anthropogenic and widespread geogenic contamination could be capable of presenting health risks, having implications for land management decisions in jurisdictions where guidance advises these forms of pollution should not be regarded as contaminated land.
Afficher plus [+] Moins [-]The influence of substrate material on ascidian larval settlement Texte intégral
2016
Chase, Anna L. | Dijkstra, Jennifer A. | Harris, Larry G.
Submerged man-made structures present novel habitat for marine organisms and often host communities that differ from those on natural substrates. Although many factors are known to contribute to these differences, few studies have directly examined the influence of substrate material on organism settlement. We quantified larval substrate preferences of two species of ascidians, Ciona intestinalis (cryptogenic, formerly C. intestinalis type B) and Botrylloides violaceus (non-native), on commonly occurring natural (granite) and man-made (concrete, high-density polyethylene, PVC) marine materials in laboratory trials. Larvae exhibited species-specific settlement preferences, but generally settled more often than expected by chance on concrete and HDPE. Variation in settlement between materials may reflect preferences for rougher substrates, or may result from the influence of leached chemicals on ascidian settlement. These findings indicate that an experimental plate material can influence larval behavior and may help us understand how substrate features may contribute to differences in settlement in the field.
Afficher plus [+] Moins [-]Antagonistic effects of seawalls and urban sedimentation on epilithic algal matrix (EAM)-feeding fishes Texte intégral
2021
Ng, Dillen | Taira, Daisuke | Heery, Eliza C. | Todd, Peter A.
Marine urbanisation often results in the proliferation of artificial coastal defences and heavy sedimentation, adversely impacting coral reef systems in tropical coastal cities. Knowledge of how motile organisms, such as reef fish, respond to novel human-made habitats and high sedimentation is limited. Here, we examine the role of sloping granite seawalls in supporting reef fishes that utilise the epilithic algal matrix (EAM) as a food resource. We surveyed fish assemblages and feeding activities on seawalls and reef flats, and conducted a field experiment to examine the effects of sediment on EAM feeding rates. Seawalls and reef flats supported distinct fish assemblage composition with significantly greater feeding activity on seawalls. However, reduced feeding activity on EAM with elevated sediment loads suggests that urban sedimentation may limit the utility of this novel feeding ground for nearshore communities. These findings illustrate the complexities and interactive effects of anthropogenic changes driven by coastal urbanisation.
Afficher plus [+] Moins [-]Spatial variability in community composition on a granite breakwater versus natural rocky shores: Lack of microhabitats suppresses intertidal biodiversity Texte intégral
2014
Aguilera, Moisés A. | Broitman, Bernardo R. | Thiel, Martin
Strong differences have been observed between the assemblages on artificial reefs and on natural hard-bottom habitats worldwide, but little is known about the mechanisms that cause contrasting biodiversity patterns. We examined the influence of spatial attributes in relation to both biogenic and topographic microhabitats, in the distribution and composition of intertidal species on both artificial and natural reefs. We found higher small-scale spatial heterogeneity on the natural reef compared with the study breakwater. Species richness and diversity were associated with a higher availability of crevices, rock pools and mussels in natural habitats. Spatial distribution of certain grazers corresponded well with the spatial structure of microhabitats. In contrast, the lack of microhabitats on the breakwater resulted in the absence of several grazers reflected in lower species richness. Biogenic and topographic microhabitats can have interactive effects providing niche opportunities for multiple species, explaining differences in species diversity between artificial versus natural reefs.
Afficher plus [+] Moins [-]Monitoring of nitrogen compounds on Yakushima Island, a world natural heritage site
1998
Satake, K. | Inoue, T. | Kasasaku, K. | Nagafuchi, O. | Nakano, T. (National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-0053 (Japan))
Evaluation of natural radioactivity levels and potential radiological hazards of common building materials utilized in Mediterranean region, Turkey Texte intégral
2022
Turhan, Şeref | Kurnaz, Asli | Karataşlı, Muhammet
Radiometric measurement of building materials is very important to assess the internal and external exposure caused by the ionizing radiation emitted from terrestrial radionuclides in building materials. The activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K in fifty-eight samples of fifteen different structural and covering building materials commonly used in Osmaniye province located in the Mediterranean region of Turkey were measured by using gamma-ray spectroscopy. The activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K varied from 2.5 ± 0.1 (marble) to 145.7 ± 4.4 (clay brick), 1.3 ± 0.1 (marble) to 154.3 ± 4.1 (marble), and 8.6 ± 0.2 (sand) to 1044.1 ± 70.3 (granite), respectively. Radiological parameters (activity concentration index, alpha index, indoor absorbed gamma dose rate and the corresponding annual effective dose rate, and excess lifetime cancer risk) were estimated to evaluate the health hazards associated with these building materials. Since the estimated values of these parameters are within the recommended safety limits or criteria values, the use of the studied building materials in the construction of dwellings can be considered to be safe for the residents of the region.
Afficher plus [+] Moins [-]Coupling loss characteristics of N-P-C through runoff and sediment in the hilly region of SE China under simulated rainfall Texte intégral
2021
Deng, Longzhou | Sun, Tianyu | Fei, Kai | Zhang, Liping | Fan, Xiaojuan | Wu, Yanhong | Ni, Liang | Sun, Rui
Soil total carbon (TC), phosphorus (P), and nitrogen (N) exports from the weathered granite slopes are greatly influenced by the complex hydrological processes and terrain factors. In this study, the coupling loss characteristics of N-P-C via runoff and sediment were studied with two soil tanks under simulated rainfalls. Three soils respectively derived from the tillage layer (T-soil), laterite layer (L-soil), and sand layer (S-soil) were employed to determine the interactions of hydrology and topography on N-P-C exports under three rainfall intensities (1.5, 2.0, and 2.5 mm/min). The erosion degree of different soils displayed an order of S-soil > L-soil > T-soil. The results showed that surface flow was the main runoff form for L- and T-soil, while underground flow was predominant for S-soil. There was a linear correlation between sediment and surface flow (R² > 0.78). Surface flow was the dominant pathway of P loss via runoff with underground flow being an important supplementation, and the main P loss pattern switched between dissolved phosphorus (DP) and particle phosphorus (PP) during the experiment. However, P lost via eroded sediment accounted for more than 94% of the TP loss amount. N presented an opposite trend to P and was mainly lost via underground flow. The main N loss form in surface and underground flow was NO₃⁻-N. Underground flow was the predominant total nitrogen (TN) loss pathway for S- and L-soil, followed by sediment and surface flow. For T-soil, TN lost via runoff was much greater than that carried by eroded sediment. TC for S-soil was mainly lost via underground flow while that for L- and T-soil was mostly lost via surface flow. Both N-P loss loads in surface flow and P loss load in underground flow were positively correlated with TC loss load (p < 0.05), indicating that the presence of organic matter brings about more nutrient losses. These results expand our understanding of the combined effects of rainfall intensity and erosion degree on runoff and sediment yields as well as N-P-C losses from the bare weathered granite slopes of SE China.
Afficher plus [+] Moins [-]Removal of Saline Water due to Road Salt Applications from Columns of Two Types of Sand by Rainwater Infiltration: Laboratory Experiments and Model Simulations Texte intégral
2019
Mass transport and residence time of saline water from road salt applications in soil columns composed of Toyoura sand and weathered granite sand were investigated by simulations and in laboratory experiments. Both are sands found in Japan, especially the weathered granite sand. The Toyoura sand has a fairly uniform particle size of 0.1 to 0.4 mm diameter, and a saturated hydraulic conductivity Kₛ = 0.0296 cm/s, while the weathered granite sand used consisted of 13% fine materials (silt and clay) and 87% coarse materials (sand and gravel) with a saturated hydraulic conductivity Kₛ = 0.00393 cm/s. A model was developed to simulate rinsing of brine from a soil column. Assuming a steady, homogeneous flow induced by rainwater infiltration into the soil column, the model was found to match the experimental results for Toyoura sand very well. The normalized salt concentration in the effluent from the 40 cm tall soil column remained constant until about t = 500 s; the concentration then decreased with time quickly and, finally, approached zero. For the weathered granite sand, however, the salt concentrations in the effluent simulated by the model with assumption of homogeneous flow are inconsistent with the experimental data collected. A substantial delay occurs in mass transport of salt from the column, which is different from the Toyoura sand. The delay is attributed to shifts in “active” and “inactive pores” created in the soil due to fine particles such as silt and clay. The proportion of “active pores” and “inactive pores” is not constant but variable with time due to physical and/or electrochemical processes such as pore-size distributions and salt depletion in the soil. A modified model presented, using a time-variable active pore parameter k(t), can reproduce the experimental results for salt mass left in the soil better.
Afficher plus [+] Moins [-]Comparison of Kinetics of Arsenic(V) Adsorption on Two Types of Red Soil Weathered from Granite and Sandstone Texte intégral
2016
Untreated arsenic polluted groundwater is threatening people health, especially the people in rural areas. Soil may become one kind of promising natural material applied conveniently in rural areas for the treatment of arsenic polluted groundwater, due to its abundance, low cost, and high adsorption efficiency. The present study investigated arsenic(V) (As(V)) adsorption on two red soil samples weathered from granite (RSG) and sandstone (RSS). The two soil samples contain similar mineral types but show relatively high differences of content of iron, aluminum, and organic matter (OM), as well as point of zero charge (pHPZC) and specific surface area (SSA). Batch experiments were performed to examine the effect of initial As(V) concentration, solution pH, and temperature on the kinetics of the adsorption of As(V) by the two soil samples. The experimental results showed that the As(V) adsorption onto the two soil samples was influenced by the physicochemical properties of the soils, especially the content of iron and aluminum, the OM, as well as the pHPZC, and chemisorption was the main adsorption mechanism. The RSG sample with higher content of iron and aluminum and pHPZC showed relatively high adsorption efficiency. The OM played a negative role in the adsorption process, especially as the As/Fe molar ratio is higher. Higher adsorption capacities for the two soil samples were both obtained at lower initial As(V) concentration (1.50 and 4.0 mg/l), lower pH value (5.0), and higher temperature (313 K). Comparing to the RSS, the RSG is more suitable for the treatment of As(V)-polluted groundwater. Considering the experimental results and the natural conditions, the suggested operational conditions are pH around 7.0, temperature 293–303 K, As(V) concentration less than 4.0 mg/l, and hydraulic retention time no less than 180 min.
Afficher plus [+] Moins [-]Synergistic effect on the performance of ash-based bricks with glass wastes and granite tailings along with strength prediction by adopting machine learning approach Texte intégral
2022
Praburanganathan, Selvaraj | Chithra, Sarangapani | Simha reddy, Yeddula Bharath
The study proposes a novel and sustainable method to appropriately utilize wastes from granite as well as glass industries in brick manufacturing. An ecofriendly and low-cost manufacturing process of ash-based bricks pertaining to the Indian standard codal provisions that can be adopted on the commercial scale is deliberated. The research also recommends the method for predicting the strength of the ash-based bricks using machine learning algorithms like random forests and decision trees. For positive synergy in the performance, both the granite tailings and glass waste must be used together. Using the granite tailings and glass waste together led to a significant reduction of 75% in the fly ash requirement without compromising the brick’s performance. The addition of the granite tailings and glass waste in the mix could increase the strength of the brick by 90.5% and 37.7%, respectively. Beyond 30% dosage of granite, tailings are not recommended as they may lead to the poor gradation of particles and weak bonding in the microstructure. The glass waste in the mixture should not be more than 15% as it causes the dilution of pozzolanic reactions thereby forming fewer hydrated compounds. Brick’s durability is known after exposing the specimens for 1 year to sewers and biogenic corrosion environment, marine environment, and saline soil environment, respectively. The inclusion of the industrial wastes significantly reduced the specimen damage in the extreme environmental conditions along with the least absorption rates. The dosage of ash, granite tailings, and glass waste has to be maintained around 15%, 30%, and 15%, respectively for attaining the optimum performance. Out of the generated machine learning algorithms, only random forests could be able to predict the values accurately with R² values at 0.90 and with comparatively lesser errors.
Afficher plus [+] Moins [-]