Affiner votre recherche
Résultats 1-10 de 352
The combined effect of short-term hydrological and N-fertilization manipulation of wetlands on CO2, CH4, and N2O emissions
2022
Bonetti, Giuditta | Limpert, Katy E. | Brodersen, Kasper Elgetti | Trevathan-Tackett, Stacey M. | Carnell, Paul E. | Macreadie, Peter I.
Freshwater wetlands are natural sinks of carbon; yet, wetland conversion for agricultural uses can shift these carbon sinks into large sources of greenhouse gases. We know that the anthropogenic alteration of wetland hydrology and the broad use of N-fertilizers can modify biogeochemical cycling, however, the extent of their combined effect on greenhouse gases exchange still needs further research. Moreover, there has been recent interest in wetlands rehabilitation and preservation by improving natural water flow and by seeking alternative solutions to nutrient inputs. In a microcosm setting, we experimentally exposed soils to three inundation treatments (Inundated, Moist, Drained) and a nutrient treatment by adding high nitrogen load (300 kg ha⁻¹) to simulate physical and chemical disturbances. After, we measured the depth microprofiles of N₂O and O₂ concentration and CO₂ and CH₄ emission rates to determine how hydrological alteration and nitrogen input affect carbon and nitrogen cycling processes in inland wetland soils. Compared to the Control soils, N-fertilizer increased CO₂ emissions by 40% in Drained conditions and increased CH₄ emissions in Inundated soils over 90%. N₂O emissions from Moist and Inundated soils enriched with nitrogen increased by 17.4 and 18-fold, respectively. Overall, the combination of physical and chemical disturbances increased the Global Warming Potential (GWP) by 7.5-fold. The first response of hydrological rehabilitation, while typically valuable for CO₂ emission reduction, amplified CH₄ and N₂O emissions when combined with high nitrogen inputs. Therefore, this research highlights the importance of evaluating the potential interactive effects of various disturbances on biogeochemical processes when devising rehabilitation plans to rehabilitate degraded wetlands.
Afficher plus [+] Moins [-]Optimizing nitrogen management reduces mineral nitrogen leaching loss mainly by decreasing water leakage in vegetable fields under plastic-shed greenhouse
2022
Zhou, Weiwei | Lv, Haofeng | Chen, Fei | Wang, Qunyan | Li, Junliang | Chen, Qing | Liang, Bin
Excessive fertilization leads to high nitrogen (N) leaching under intensive plastic-shed vegetable production systems, and thereby results in the contaminations of ground or surface water. Therefore, it is urgent to develop cost-effective strategies of nitrogen management to overcome these obstacles. A 15-year experiment in annual double-cropping systems was conducted to explore impacts of N application rate and straw amendment on mineral N leaching loss in plastic-shed greenhouse. The results showed that seasonal mineral N leaching was up to 103.4–603.4 kg N ha⁻¹, accounting for 12%–41% of total N input under conventional N fertilization management. However, optimized N application rates by 47% and straw addition obviously decreased mineral N leaching by 4%–86%, while had no negative impacts on N uptake and tomato yields. These large decreases of N leaching loss were mainly due to the reduced leachate amount and followed by N concentration in leachate, which was supported by improved soil water holding capacity after optimizing N application rates and straw addition. On average, 52% of water leachate and 55% of mineral N leaching simultaneously occurred within 40 days after planting, further indicating the dominant role of water leakage in regulating mineral N leaching loss. Moreover, decreasing mineral N leaching was beneficial for reducing leaching loss of base cations. Therefore, optimized N application rates and straw amendment effectively alleviates mineral N leaching losses mainly by controlling the water leakage without yield loss in plastic-shed greenhouse, making this strategy promising and interesting from environmental and economical viewpoints.
Afficher plus [+] Moins [-]Deciphering the diversity, composition, function, and network complexity of the soil microbial community after repeated exposure to a fungicide boscalid
2022
Boscalid is a novel, highly effective carboximide fungicide that has been substantially and irrationally applied in greenhouses. However, little is known about the residual characteristics of boscalid and its ecological effects in long-term polluted greenhouse soils. Therefore, actual boscalid pollution status in greenhouse soils was simulated by repeatedly introducing boscalid into the soil under laboratory conditions. The degradation characteristics of boscalid, and its effects on the diversity, composition, function, and co-occurrence patterns of the soil microbial community were systematically investigated. Boscalid degraded slowly, with its degradation half-lives ranging from 31.5 days to 180.1 days in the soil. Boscalid degradation was further delayed by repeated treatment and increasing its initial concentration. Boscalid significantly decreased soil microbial diversity, particularly at the recommended dosage. Amplicon sequencing analysis showed that boscalid altered the soil microbial community and further stimulated the phylum Proteobacteria and four potential boscalid-degrading bacterial genera, Sphingomonas, Starkeya, Citrobacter, and Castellaniella. Although the network analysis revealed that boscalid significantly reduced the microbial network complexity, it enhanced the vital roles of Proteobacteria by increasing its proportion and strengthening the relationships among the internal bacteria in the network. The soil microbial function in the boscalid treatment were simulated at the recommended dosage and two-fold recommended dosage but showed an inhibition-recovery-stimulation trend at the five-fold recommended dosage with an increase in treatment frequency. Moreover, the expression of nitrogen cycling functional genes, nifH, AOA amoA, AOB amoA, nirK, and nirS in all boscalid treatments displayed an inhibition-recovery-stimulation trend during the entire experimental period, and the effects were more pronounced at the five-fold recommended dosage. In conclusion, repeated boscalid treatments delayed degradation, reduced soil microbial diversity and network complexity, disturbed soil microbial community, and interfered with soil microbial function.
Afficher plus [+] Moins [-]Attributed radiative forcing of air pollutants from biomass and fossil burning emissions
2022
Jiang, Ke | Fu, Bo | Luo, Zhihan | Xiong, Rui | Men, Yatai | Shen, Huizhong | Li, Bengang | Shen, Guofeng | Tao, Shu
Energy is vital to human society but significantly contributes to the deterioration of environmental quality and the global issue of climate change. Biomass and fossil fuels are important energy sources but have distinct pollutant emission characteristics during the burning process. This study aimed at attributing radiative forcing of climate forcers, including greenhouse gases but also short-lived climate pollutants, from the burning of fossil and biomass fuels, and the spatiotemporal characteristics. We found that air pollutant emissions from the burning process of biofuel and fossil fuels induced RFs of 68.2 ± 36.8 mW m⁻² and 840 ± 225 mW m⁻², respectively. The relatively contribution of biomass burning emissions was 7.6% of that from both fossil and biofuel combustion processes, while its contribution in energy supply was 11%. These relative contributions varied obviously across different regions. The per unit energy consumption of biomass fuel in the developed regions, such as North America (0.57 ± 0.33 mW m⁻²/10⁷TJ) and Western Europe (0.98 ± 0.79 mW m⁻²/10⁷TJ), had higher impacts of combustion emission related RFs compared to that of developing regions, like China (0.40 ± 0.26 mW m⁻²/10⁷TJ), and South and South-East Asia (0.31 ± 0.71 mW m⁻²/10⁷TJ) where low efficiency biomass burning in residential sector produced significant amounts of organic matter that had a cooling effect. Note that the study only evaluated fuel combustion emission related RFs, and those associated with the production of fuels and land use change should be studied later in promoting a comprehensive understanding on the climate impacts of biomass utilization.
Afficher plus [+] Moins [-]Effect of zinc and iron oxide nanoparticles on plant physiology, seed quality and microbial community structure in a rice-soil-microbial ecosystem
2022
Afzal, Shadma | Singh, Nand K.
In this study, we assessed the impact of zinc oxide (ZnO) and iron oxide (FeO) (<36 nm) nanoparticles (NPs) as well as their sulphate salt (bulk) counterpart (0, 25, 100 mg/kg) on rice growth and seed quality as well as the microbial community in the rhizosphere environment of rice. During the rice growing season 2021–22, all experiments were conducted in a greenhouse (temperature: day 30 °C; night 20 °C; relative humidity: 70%; light period: 16 h/8 h, day/night) in rice field soil. Results showed that low concentrations of FeO and ZnO NPs (25 mg/kg) promoted rice growth (height (29%, 16%), pigment content (2%, 3%)) and grain quality parameters such as grains per spike (8%, 9%), dry weight of grains (12%, 14%) respectively. As compared to the control group, the Zn (2%) and Fe (5%) accumulations at their respective low concentrations of NP treatments showed stimulation. Interestingly, our results showed that at low concentration of both the NPs the soil microbes had more diversity and richness than those in the bulk treated and control soil group. Although a number of phyla were affected by the presence of NPs, the strongest effects were observed for change in the abundance of the three phyla for Proteobacteria, Actinobacteria, and Planctomycetes. The rhizosphere environment was notably enriched with potential streptomycin producers, carbon and nitrogen fixers, and lignin degraders with regard to functional groups of microorganisms. However, microbial communities mainly responsible for chitin degradation, ammonia oxidation, and nitrite reduction were found to be decreased. The results from this study highlight significant changes in several plant-based endpoints, as well as the rhizosphere soil microorganisms. It further adds information to our understanding of the nanoscale-specific impacts of important micronutrient oxides on both rice and its associated soil microbiome.
Afficher plus [+] Moins [-]A decade of CO2 flux measured by the eddy covariance method including the COVID-19 pandemic period in an urban center in Sakai, Japan
2022
Ueyama, Masahito | Takano, Tsugumi
Cities constitute an important source of greenhouse gases, but few results originating from long-term, direct CO₂ emission monitoring efforts have been reported. In this study, CO₂ emissions were quasi-continuously measured in an urban center in Sakai, Osaka, Japan by the eddy covariance method from 2010 to 2021. Long-term CO₂ emissions reached 22.2 ± 2.0 kg CO₂ m⁻² yr⁻¹ from 2010 to 2019 (± denotes the standard deviation) in the western sector from the tower representing the densely built-up area. Throughout the decade, the annual CO₂ emissions remained stable. According to an emission inventory, traffic emissions represented the major source of CO₂ emissions within the flux footprint. The interannual variations in the annual CO₂ flux were positively correlated with the mean annual traffic counts at two highway entrances and exits. The CO₂ emissions decreased suddenly, by 32% ± 3.1%, in April and May 2020 during the period in which the first state of emergency associated with COVID-19 was declared. The annual CO₂ emissions also decreased by 25% ± 3.1% in 2020. Direct long-term observations of CO₂ emissions comprise a useful tool to monitor future emission reductions and sudden disruptions in emissions, such as those beginning in 2020 during the COVID-19 pandemic.
Afficher plus [+] Moins [-]Effects of ozone stress on flowering phenology, plant-pollinator interactions and plant reproductive success
2021
Duque, Laura | Poelman, Erik H. | Steffan-Dewenter, Ingolf
Tropospheric ozone is a highly oxidative pollutant with the potential to alter plant metabolism. The direct effects of ozone on plant phenotype may alter interactions with other organisms, such as pollinators, and, consequently, affect plant reproductive success. In a set of greenhouse experiments, we tested whether exposure of plants to a high level of ozone affected their phenological development, their attractiveness to four different pollinators (mason bees, honeybees, hoverflies and bumblebees) and, ultimately, their reproductive success. Exposure of plants to ozone accelerated flowering, particularly on plants that were growing in autumn, when light and temperature cues, that commonly promote flowering, were weaker. Simultaneously, there was a tendency for ozone-exposed plants to disinvest in vegetative growth. Plant exposure to ozone did not substantially affect pollinator preference, but bumblebees had a tendency to visit more flowers on ozone-exposed plants, an effect that was driven by the fact that these plants tended to have more open flowers, meaning a stronger attraction signal. Honeybees spent more time per flower on ozone-exposed plants than on control plants. Acceleration of flower production and the behavioural responses of pollinators to ozone-exposed plants resulted in retained reproductive fitness of plants pollinated by bumblebees, honeybees and mason bees, despite the negative effects of ozone on plant growth. Plants that were pollinated by hoverflies had a reduction in reproductive fitness in response to ozone. In a natural setting, acceleration of flowering by ozone might foster desynchronization between plant and pollinator activities. This can have a strong impact on plants with short flowering periods and on plants that, unlike wild mustard, lack compensatory mechanisms to cope with the absence of pollinator activity in the beginning of flowering.
Afficher plus [+] Moins [-]A temporal record of microplastic pollution in Mediterranean seagrass soils
2021
Dahl, Martin | Bergman, Sanne | Björk, Mats | Diaz-Almela, Elena | Granberg, Maria | Gullström, Martin | Leiva-Dueñas, Carmen | Magnusson, Kerstin | Marco-Méndez, Candela | Piñeiro-Juncal, Nerea | Mateo Pérez, Miguel Ángel
Plastic pollution is emerging as a potential threat to the marine environment. In the current study, we selected seagrass meadows, known to efficiently trap organic and inorganic particles, to investigate the concentrations and dynamics of microplastics in their soil. We assessed microplastic contamination and accumulation in ²¹⁰Pb dated soil cores collected in Posidonia oceanica meadows at three locations along the Spanish Mediterranean coast, with two sites located in the Almería region (Agua Amarga and Roquetas) and one at Cabrera Island (Santa Maria). Almería is known for its intense agricultural industry with 30 000 ha of plastic-covered greenhouses, while the Cabrera Island is situated far from urban areas. Microplastics were extracted using enzymatic digestion and density separation. The particles were characterized by visual identification and with Fourier-transformed infrared (FTIR) spectroscopy, and related to soil age-depth chronologies. Our findings showed that the microplastic contamination and accumulation was negligible until the mid-1970s, after which plastic particles increased dramatically, with the highest concentrations of microplastic particles (MPP) found in the recent (since 2012) surface soil of Agua Amarga (3819 MPP kg⁻¹), followed by the top-most layers of the soil of the meadows in Roquetas (2173 kg⁻¹) and Santa Maria (68–362 kg⁻¹). The highest accumulation rate was seen in the Roquetas site (8832 MPP m⁻² yr⁻¹). The increase in microplastics in the seagrass soil was associated to land-use change following the intensification of the agricultural industry in the area, with a clear relationship between the development of the greenhouse industry in Almería and the concentration of microplastics in the historical soil record. This study shows a direct linkage between intense anthropogenic activity, an extensive use of plastics and high plastic contamination in coastal marine ecosystems such as seagrass meadows. We highlight the need of proper waste management to protect the coastal environment from continuous pollution.
Afficher plus [+] Moins [-]Eco-friendly yield-scaled global warming potential assists to determine the right rate of nitrogen in rice system: A systematic literature review
2021
Islam Bhuiyan, Mohammad Saiful | Rahamāna, Ājijura | Kim, Gil Won | Das, Suvendu | Kim, Pil Joo
Rice paddies are one of the largest greenhouse gases (GHGs) facilitators that are predominantly regulated by nitrogen (N) fertilization. Optimization of N uses based on the yield has been tried a long since, however, the improvement of the state-of-the-art technologies and the stiffness of global warming need to readjust N rate. Albeit, few individual studies started to, herein attempted as a systematic review to generalize the optimal N rate that minimizes global warming potential (GWP) concurrently provides sufficient yield in the rice system. To satisfy mounted food demand with inadequate land & less environmental impact, GHGs emissions are increasingly evaluated as yield-scaled basis. This systematic review (20 published studies consisting of 21 study sites and 190 observations) aimed to test the hypothesis that the lowest yield-scaled GWP would provide the minimum GWP of CH₄ and N₂O emissions from rice system at near optimal yields. Results revealed that there was a strong polynomial quadratic relationship between CH₄ emissions and N rate and strong positive correlation between N₂O emissions and N rate. Compared to control the low N dose emitted less (23%) CH₄ whereas high N dose emitted higher (63%) CH₄ emission. The highest N₂O emission observed at moderated N level. In total GWP, about 96% and 4%, GHG was emitted as CH₄ and N₂O, respectively. The mean GWP of CH₄ and N₂O emissions from rice was 5758 kg CO₂ eq ha⁻¹. The least yield-scaled GWP (0.7565 (kg CO₂ eq. ha⁻¹)) was recorded at 190 kg N ha⁻¹ that provided the near utmost yield. This dose could be a suitable dose in midseason drainage managed rice systems especially in tropical and subtropical climatic conditions. This yield-scaled GWP supports the concept of win–win for food security and environmental aspects through balancing between viable rice productivity and maintaining convincing greenhouse gases.
Afficher plus [+] Moins [-]Fuel consumption and air emissions in one of the world’s largest commercial fisheries
2021
Chassot, Emmanuel | Antoine, Sharif | Guillotreau, Patrice | Lucas, Juliette | Assan, Cindy | Marguerite, Michel | Lamboy, Nathalie Bodin
The little information available on fuel consumption and emissions by high seas tuna fisheries indicates that the global tuna fleet may have consumed about 2.5 Mt of fuel in 2009, resulting in the production of about 9 Mt of CO₂-equivalent greenhouse gases (GHGs), i.e., about 4.5–5% of the global fishing fleet emissions. We developed a model of annual fuel consumption for the large-scale purse seiners operating in the western Indian Ocean as a function of fishing effort, strategy, and vessel characteristics based on an original and unique data set of more than 4300 bunkering operations that spanned the period 2013–2019. We used the model to estimate the total fuel consumption and associated GHG and SO₂ emissions of the Indian Ocean purse seine fishery between 1981 and 2019. Our results showed that the energetic performance of this fishery was characterized by strong interannual variability over the last four decades. This resulted from a combination of variations in tuna abundance but also changes in catchability and fishing strategy. In recent years, the increased targeting of schools associated with fish aggregating devices in response to market incentives combined with the IOTC management measure implemented to rebuild the stock of yellowfin tuna has strongly modified the productivity and spatio-temporal patterns of purse seine fishing. This had effects on fuel consumption and air pollutant emissions. Over the period 2015 to 2019, the purse seine fishery, including its support vessel component, annually consumed about 160,000 t of fuel and emitted 590,000 t of CO2-eq GHG. Furthermore, our results showed that air pollutant emissions can be significantly reduced when limits in fuel composition are imposed. In 2015, SO₂ air pollution exceeded 1500 t, but successive implementation of sulphur limits in the Indian Ocean purse seine fishery in 2016 and 2018 have almost eliminated this pollution. Our findings highlight the need for a routine monitoring of fuel consumption with standardized methods to better assess the determinants of fuel consumption in fisheries and the air pollutants they emit in the atmosphere.
Afficher plus [+] Moins [-]