Affiner votre recherche
Résultats 1-10 de 813
Microplastics in surface sediments of a highly urbanized wetland
2022
Birami, Farideh Amini | Keshavarzi, Behnam | Moore, Farid | Busquets, Rosa | Zafarani, Seyed Ghasem Ghorbanzadeh | Golshani, Reza | Cheshmvahm, Hamidreza
This study investigates the incidence of MPs in surface sediment samples, collected from the Anzali Wetland, Gillan province, North of Iran. This natural habitat receives municipal wastewater effluents and hosts industries and recreational activities that could release plastic to the wetland. There is need for studies to understand MPs pollution in wetlands. A total of 40 superficial sediment samples were taken covering potential pollution hotspots in the wetland. The average level of MPs was 362 ± 327.6 MP/kg: the highest MPs levels were near the outlet of a highly urbanized river (Pirbazar River) (1380 MP/kg), which runs through Rasht city. This was followed by 1255 MP/kg where there was intense fishing, boating and tourism activities in the vicinity of Bandar-e Anzali city. Fibers were the most common type of MPs (80% of the total MPs detected). The MPs polluting the wetland were predominantly white/transparent (42%), and about 40% of them were >1000 μm. Polypropylene (PP) and polyethylene (PE) prevailed in MPs found. MPs were characterized with polarized light microscopy, Raman spectroscopy, Scanning Electron Microscopy coupled with Energy-Dispersive X-ray spectroscopy. Microplastics levels were found to correlate significantly (p > 0.7) with electrical conductivity (EC) and sand-size fraction of the sediments. Coarse-grained sediments presented large capacity to lodge the MPs. This study can be used to establish protection policies in wetlands and newly highlights the opportunity of intercepting MPs in the Anzali Wetland, which are generally >250 μm, before they fragment further.
Afficher plus [+] Moins [-]Characterization of anthropogenic marine macro-debris affecting coral habitat in the highly urbanized seascape of Mumbai megacity
2022
De, Kalyan | Sautya, Sabyasachi | Gaikwad, Santosh | Mitra, Aditi | Nanajkar, Mandar
Marine debris has become a major form of pollution and a serious ecosystem health concern. The present study evaluates the accumulation, origin, and fate of debris in intertidal coral habitats of Mumbai-one of the world's highly populated coastal cities on the west coast of India. Predominantly, seven hermatypic coral species belonging to seven genera and five families were identified and mainly represented by Pseudosidastrea, Porites, and Bernardpora. In terms of number, the mean density of marine debris was 1.60 ± 0.13 SE items/m², which is higher than the global average. The mean density of plastic debris was 1.46 ± 0.14 SE items/m². Approximately 9% of total coral colonies were in physical contact with debris, and 22% of these colonies showed visible signs of partial bleaching. Single use plastic bags and wrappers were dominant plastic debris. The study area was characterized as ‘very poor cleanliness’ according to the Beach Quality Indexes, which include the Clean Coast Index, General Index, and Hazardous Items Index. The numerical model indicates the influence of river discharge and probable areas of plastic accumulation with high tidal currents in this region, maneuvering the spatial advection of litter in the nearshore areas. Combined analysis of ground-truthing and model simulation implies that the possible contributing sources of litter were representatives of land-based and sea-originated. The overall results point to increasing anthropogenic stressors threatening coastal coral communities, including marine debris pollution. It is advocated to adopt an integrated coastal zone management approach supported by coordinated policy frameworks could guide the mitigation of the debris footprint in coastal environments.
Afficher plus [+] Moins [-]Metal(loid) pollution, not urbanisation nor parasites predicts low body condition in a wetland bioindicator snake
2022
Lettoof, Damian C. | Cornelis, Jari | Jolly, Christopher J. | Aubret, Fabien | Gagnon, Marthe Monique | Hyndman, Timothy H. | Barton, Diane P. | Bateman, Philip W.
Urban ecosystems and remnant habitat 'islands' therein, provide important strongholds for many wildlife species including those of conservation significance. However, the persistence of these habitats can be undermined if their structure and function are too severely disrupted. Urban wetlands, specifically, are usually degraded by a monoculture of invasive vegetation, disrupted hydrology, and chronic-contamination from a suite of anthropogenic pollutants. Top predators—as bioindicators—can be used to assess and monitor the health of these ecosystems. We measured eight health parameters (e.g., parasites, wounds and scars, tail loss and body condition) in a wetland top predator, the western tiger snake, Notechis scutatus occidentalis. For three years, snakes were sampled across four wetlands along an urban gradient. For each site, we used GIS software to measure the area of different landscapes and calculate an urbanisation–landscape score. Previously published research on snake contamination informed our calculations of a metal-pollution index for each site. We used generalised linear mixed models to assess the relationship between all health parameters and site variables. We found the metal-pollution index to have the most significant association with poor body condition. Although parasitism, tail loss and wounds differed among sites, none of these parameters influenced body condition. Additionally, the suite of health parameters suggested differing health status among sites; however, our measure of contemporary landscape urbanisation was never a significant predictor variable. Our results suggest that the health of wetland predators surrounding a rapidly growing city may be offset by higher levels of environmental pollution.
Afficher plus [+] Moins [-]Improved breeding parameters in the pied flycatcher with reduced pollutant emissions from a copper smelter
2022
Belskii, Eugen | Lyakhov, Andrey
In recent decades, industrial emissions have been reduced in many countries, which provides an opportunity for the recovery of polluted ecosystems. However, our knowledge of the rate and factors facilitating the recovery of local bird populations after pollution abatement is incomplete. Long-term (1989–2021) annual observations on nest-box populations of a passerine bird, Ficedula hypoleuca, were used to analyze temporal dynamics of breeding parameters following a 50-fold reduction of industrial emissions from the Middle Ural copper smelter (MUCS) according to pollution zone, habitat, air temperature, and breeding density. In the heavily polluted (impact) zone (1–2 km of MUCS), egg and fledgling production were strongly impaired compared to the moderately polluted (buffer zone, 4–8 km of MUCS) and unpolluted control zone (16–27 km of MUCS). During the study period, the laying date advanced along with increasing spring air temperatures. The clutch size increased in the impact zone by 26%, in the buffer zone by 10%, and in control by 5%. The number of fledglings increased in the impact zone by 102% and the buffer zone by 17%. In the most recent year (2021), mean laying date, clutch size, fledgling production, and the frequency of nests with unhatched eggs in the impact zone did not reach the control level, whereas the frequency of nests with perished chicks did not differ among zones. Breeding parameters of birds in the impact zone improved slowly, likely due to the slow recovery of habitats. We conclude that bird reproduction may require many decades to recover fully in the heavily polluted zone.
Afficher plus [+] Moins [-]Exposure to nanoplastic induces cell damage and nitrogen inhibition of activated sludge: Evidence from bacterial individuals and groups
2022
Tang, Sijing | Qian, Jin | Wang, Peifang | Lu, Bianhe | He, Yuxuan | Yi, Ziyang | Zhang, Yuhang
Wastewater treatment plants (WWTPs) are almost the only place where plastic fragments are artificially removed, resulting in mass accumulation of nanoplastics (NPs). In this research, four different concentrations (0 mg/L, 0.1 mg/L, 1 mg/L, 10 mg/L) of polystyrene nanoplastics (PS-NPs) were used to investigate the cell damage and nitrogen inhibition of activated sludge, exposed in a self-assembled SBR reactor for 30 days. Intracellular reactive oxides (ROS) and extracellular lactate dehydrogenase (LDH) increased with the rise of exposure concentration, and morphological analysis disclosed the creases, collapse, and even rupture of cell membranes. However, exposure damage (PS-NPs ≤ 1 mg/L) appeared to be reversible, attributed to that extracellular polymeric substances (EPS) secretion can thicken the three protective layers outside the membrane. PS-NPs did not disrupt the EPS chemical structure, but increased humic acid content. Prolonged exposure time (from 15 to 30 days) was directly related to the nitrogen inhibition. Due to the habitat changes under PS-NPs exposure, abundance and diversity of microorganisms in the original activated sludge decreased significantly, and the dominant phylum was occupied by Patescibacteria (PS-NPs = 10 mg/L). Changes in enzyme activities of AMO, NR, NIR, and NOR with exposure concentration may explain the conversion of nitrogen in SBR. This research broadens our horizons to understand the response mechanism of activated sludge bacteria to PS-NPs exposure individually and collectively.
Afficher plus [+] Moins [-]Comprehensive analyses of agrochemicals affecting aquatic ecosystems: A case study of Odonata communities and macrophytes in Saga Plain, northern Kyushu, Japan
2022
Tazunoki, Yuhei | Tokuda, Makoto | Sakuma, Ayumi | Nishimuta, Kou | Oba, Yutaro | Kadokami, Kiwao | Miyawaki, Takashi | Ikegami, Makihiko | Ueno, Daisuke
The negative influence of agrochemicals (pesticides: insecticide, fungicide, and herbicide) on biodiversity is a major ecological concern. In recent decades, many insect species are reported to have rapidly declined worldwide, and pesticides, including neonicotinoids and fipronil, are suspected to be partially responsible. In Japan, application of systemic insecticides to nursery boxes in rice paddies is considered to have caused rapid declines in Sympetrum (Odonata: Libellulidae) and other dragonfly and damselfly populations since the 1990s. In addition to the direct lethal effects of pesticides, agrochemicals indirectly affect Odonata populations through reductions in macrophytes, which provide a habitat, and prey organisms. Due to technical restrictions, most previous studies first selected target chemicals and then analyzed their influence on focal organisms at various levels, from the laboratory to the field. However, in natural and agricultural environments, various chemicals co-occur and can act synergistically. Under such circumstances, targeted analyses might lead to spurious correlations between a target chemical and the abundance of organisms. To address such problems, in this study we adopted a novel technique, “Comprehensive Target Analysis with an Automated Identification and Quantification System (CTA-AIQS)” to detect wide range of agrochemicals in water environment. The relationships between a wide range of pesticides and lentic Odonata communities were surveyed in agricultural and non-agricultural areas in Saga Plain, Kyushu, Japan. We detected significant negative relationships between several insecticides, i.e., acephate, clothianidin, dinotefuran, flubendiamide, pymetrozine, and thiametoxam (marginal for benthic odonates) and the abundance of lentic Epiprocta and benthic Odonates. In contrast, the herbicides we detected were not significantly related to the abundance of aquatic macrophytes, suggesting a lower impact of herbicides on aquatic vegetation at the field level. These results highlight the need for further assessments of the influence of non-neonicotinoid insecticides on aquatic organisms.
Afficher plus [+] Moins [-]Mercury biomagnification in an Antarctic food web of the Antarctic Peninsula
2022
Matias, Ricardo S. | Guímaro, Hugo R. | Bustamante, Paco | Seco, José | Chipev, N. | Fragão, Joana | Tavares, Sílvia | Ceia, Filipe R. | Pereira, Maria E. | Barbosa, Andrés | Xavier, José C.
Under the climate change context, warming Southern Ocean waters may allow mercury (Hg) to become more bioavailable to the Antarctic marine food web (i.e., ice-stored Hg release and higher methylation rates by microorganisms), whose biomagnification processes are poorly documented. Biomagnification of Hg in the food web of the Antarctic Peninsula, one of the world's fastest-warming regions, was examined using carbon (δ¹³C) and nitrogen (δ¹⁵N) stable isotope ratios for estimating feeding habitat and trophic levels, respectively. The stable isotope signatures and total Hg (T-Hg) concentrations were measured in Antarctic krill Euphausia superba and several Antarctic predator species, including seabirds (gentoo penguins Pygoscelis papua, chinstrap penguins Pygoscelis antarcticus, brown skuas Stercorarius antarcticus, kelp gulls Larus dominicanus, southern giant petrels Macronectes giganteus) and marine mammals (southern elephant seals Mirounga leonina). Significant differences in δ¹³C values among species were noted with a great overlap between seabird species and M. leonina. As expected, significant differences in δ¹⁵N values among species were found due to interspecific variations in diet-related to their trophic position within the marine food web. The lowest Hg concentrations were registered in E. superba (0.007 ± 0.008 μg g⁻¹) and the highest values in M. giganteus (12.090 ± 14.177 μg g⁻¹). Additionally, a significant positive relationship was found between Hg concentrations and trophic levels (reflected by δ¹⁵N values), biomagnifying nearly 2 times its concentrations at each level. Our results support that trophic interaction is the major pathway for Hg biomagnification in Southern Ocean ecosystems and warn about an increase in the effects of Hg on long–lived (and high trophic level) Antarctic predators under climate change in the future.
Afficher plus [+] Moins [-]Microplastic distribution and composition on two Galápagos island beaches, Ecuador: Verifying the use of citizen science derived data in long-term monitoring
2022
Jones, Jen S. | Guézou, Anne | Medor, Sara | Nickson, Caitlin | Savage, Georgie | Alarcón-Ruales, Daniela | Galloway, Tamara S. | Muñoz-Pérez, Juan Pablo | Nelms, Sarah E. | Porter, Adam | Thiel, Martin | Lewis, Ceri
Monitoring beach plastic contamination across space and time is necessary for understanding its sources and ecological effects, and for guiding mitigation. This is logistically and financially challenging, especially for microplastics. Citizen science represents an option for sampling accessible sites to support long term monitoring, but challenges persist around data validation. Here we test a simple citizen science methodology to monitor visible microplastic contamination on sandy beaches using a standard quadrat unit (50 cm × 50 cm x 5 cm depth) sieved to 1 mm, to support the analysis of microplastic on two islands within the marine protected area of the Galápagos Archipelago, Ecuador (San Cristóbal and Santa Cruz islands). High school and university students undertook supervised sampling of two beaches in 2019–2020 collecting over 7000 particles. A sub-sample of the suspected microplastics collected (n = 2,213, ∼30% total) were analysed using FTIR spectrometry, confirming 93% of particles >1 mm visually identified by students were microplastics or rubber, validating this method as a crowd-sourced indicator for microplastic contamination. These data provide important insights into the plastic contamination of Galápagos, revealing plastic abundances of 0–2524 particles m⁻² over the two beaches (the highest reported in Galápagos). Strong accumulation gradients were measured parallel to the waterline at Punta Pitt (San Cristobal island) and perpendicular to the waterline at Tortuga Bay (Santa Cruz island), where four-fold higher concentrations were recorded at the sea turtle nesting habitat on the back-beach dune. No significant seasonal trends were measured during one year. These results demonstrate the value of citizen science in filling spatiotemporal knowledge gaps of beach contamination to support intervention design and conservation.
Afficher plus [+] Moins [-]Contrasting the assembly of phytoplankton and zooplankton communities in a polluted semi-closed sea: Effects of marine compartments and environmental selection
2021
Zhao, Zelong | Li, Hongjun | Sun, Yi | Yang, Qing | Fan, Jinfeng
Understanding the underlying mechanisms of community assembly is a major challenge in microbial ecology, particularly in communities composed of diverse organisms with different ecological characteristics. However, very little is known about the effects of marine compartments in shaping marine planktonic communities; primarily, how they are related to organism types and environmental variables. In this study, we used multiple statistical methods to explore the mechanisms driving phytoplankton and zooplankton metacommunity dynamics at the regional scale in the Bohai Sea, China. Clear geographic patterns were observed in both phytoplankton and zooplankton communities. Zooplankton showed a stronger distance-decay of similarity than phytoplankton, which had greater community differences between locations with further distances. Our analyses indicated that the zooplankton communities were primarily governed by species sorting versus dispersal limitation than the phytoplankton communities. Furthermore, we detected that zooplankton exhibited wider habitat niche breadths and dispersal abilities than phytoplankton. Our findings also showed that environmental pollution affected high trophic organisms via food webs; the presence of heavy metals in the Bohai Sea altered the abundance of some phytoplankton, and thus modified the zooplankton that feed on them.
Afficher plus [+] Moins [-]Effect of microplastics on aquatic biota: A hormetic perspective
2021
Sun, Tao | Zhan, Junfei | Li, Fei | Ji, Chenglong | Wu, Huifeng
As emerging pollutants, microplastics (MPs) have been found globally in various freshwater and marine matrices. This study recompiled 270 endpoints of 3765 individuals from 43 publications, reporting the onset of enhanced biological performance and reduced oxidative stress biomarkers induced by MPs in aquatic organisms at environmentally relevant concentrations (≤1 mg/L, median = 0.1 mg/L). The stimulatory responses of consumption, growth, reproduction and survival ranged from 131% to 144% of the control, with a combined response of 136%. The overall inhibitory response of 9 oxidative stress biomarkers was 71% of the control, and commonly below 75%. The random-effects meta-regression indicated that the extents of MPs-induced responses were independent of habitat, MP composition, morphology, particle size and exposure duration. The results implied that the exposure to MPs at low and high concentrations might induce opposite/non-monotonic responses in aquatic biota. Correspondingly, the hormetic dose response relationships were found at various endpoints, such as reproduction, genotoxicity, immunotoxicity, neurotoxicity and behavioral alteration. Hormesis offers a novel perspective for understanding the dose response mode of aquatic organisms exposed to low and high concentrations of MPs, highlighting the necessity to incorporate the hormetic dose response model into the ecological/environmental risk assessment of MPs.
Afficher plus [+] Moins [-]