Affiner votre recherche
Résultats 1-10 de 124
Novel understanding of toxicity in a life cycle perspective – The mechanisms that lead to population effect – The case of Ag (nano)materials Texte intégral
2020
Rodrigues, Natália P. | Scott-Fordsmand, Janeck J. | Amorim, Mónica J.B.
Silver (Ag) is amongst the most well studied nanomaterials (NMs), although most studies have only dealt with a single AgNM at a time and one biological endpoint. We here integrate the results of various testing-tools (endpoints) using a terrestrial worm, the standard ecotoxicological model organism Enchytraeus crypticus. Exposure spanned both water and soil exposure, it covered all life stages (cocoons, juveniles and adults), varying exposure durations (1-2-3-4-5-21 days), and covered 5 biological endpoints: hatching success, survival, reproduction, avoidance and gene expression (qPCR target genes GABA and Acetyl cholinesterase). We tested 4 Ag materials: PVP coated (PVP-AgNM), non-coated (NC-AgNM), the JRC reference Ag NM300K and AgNO₃. Results showed that short-term exposure via water to assess impact on cocoons’ hatching predicted longer term effects such as survival and reproduction. Moreover, if we extended the exposure from 11 to 17 day this allowed discrimination between hatch delay and impairment. Exposure of juveniles and adults via water showed that juveniles were most sensitive with survival affected. Across materials the following toxic ranking was observed: AgNO₃ ≥ Ag NM300K ≫ NC-AgNM ≥ PVP-AgNM. E. crypticus avoided AgNO₃ in a dose-response manner, avoiding most during the first 24 h. Avoidance of Ag NM300K and NC-AgNM only occurred during the first 24 h and the PVP coated AgNM were not avoided at all. The up-regulation of the GABA triggering anesthetic effects, indicated the high ecological impact of Ag materials in soil: Ag affects the GABAergic system hence organisms were not able to efficiently avoid and became intoxicated, this caused impacts in terms of survival and reproduction.
Afficher plus [+] Moins [-]Effects of four food dyes on development of three model species, Cucumis sativus, Artemia salina and Danio rerio: Assessment of potential risk for the environment Texte intégral
2019
Motta, Chiara Maria | Simoniello, Palma | Arena, Carmen | Capriello, Teresa | Panzuto, Raffaele | Vitale, Ermenegilda | Agnisola, Claudio | Tizzano, Monica | Avallone, Bice | Ferrandino, Ida
Food dyes, or color additives, are chemicals added to industrial food products and in domestic cooking to improve the perceived flavor and attractiveness. Of natural and synthetic origin, their safety has been long discussed, and concern for human safety is now clearly manifested by warnings added on products labels. Limited attention, however, has been dedicated to the effects of these compounds on aquatic flora and fauna. For this reason, the toxicity of four different commercially available food dyes (cochineal red E120, Ponceau red E124, tartrazine yellow E102 and blue Patent E131) was assessed on three different model organisms, namely Cucumis sativus, Artemia salina and Danio rerio that occupy diverse positions in the trophic pyramid. The evidence collected indicates that food dyes may target several organs and functions, depending on the species. C. sativus rate of germination was increased by E102, while root/shoot ratio was ∼20% reduced by E102, E120 and E124, seed total chlorophylls and carotenoids were 15–20% increased by E120 and 131, and total antioxidant activity was ∼25% reduced by all dyes. Mortality and low mobility of A. salina nauplii were increased by up to 50% in presence of E124, E102 and E131, while the nauplii phototactic response was significantly altered by E102, E120 and E124. Two to four-fold increases in the hatching percentages at 48 h were induced by E124, E102 and E131 on D. rerio, associated with the occurrence of 20% of embryos showing developmental defects. These results demonstrated that the food dyes examined are far from being safe for the aquatic organisms as well as land organisms exposed during watering with contaminated water. The overall information obtained gives a realistic snapshot of the potential pollution risk exerted by food dyes and of the different organism' ability to overcome the stress induced by contamination.
Afficher plus [+] Moins [-]Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma) Texte intégral
2019
Wang, Jun | Li, Yuejiao | Lü, Lin | Zheng, Mingyi | Zhang, Xiaona | Tian, Hua | Wang, Wei | Ru, Shaoguo
The ubiquity of microplastics in the world's ocean has aroused great concern. However, the ecological effects of microplastics at environmentally realistic concentrations are unclear. Here we showed that exposure of marine medaka (Oryzias melastigma) to environmentally relevant concentrations of 10 μm polystyrene microplastics for 60 days not only led to microplastic accumulation in the gill, intestine, and liver, but also caused oxidative stress and histological changes. Moreover, 2, 20, and 200 μg/L microplastics delayed gonad maturation and decreased the fecundity of female fish. Alterations of the hypothalamus-pituitary-gonadal (HPG) axis were investigated to reveal the underlying mechanisms, and gene transcription analysis showed that microplastic exposure had significantly negative regulatory effects in female HPG axis. Transcription of genes involved in the steroidogenesis pathway in females were also downregulated. This disruption resulted in decreased concentrations of 17β-estradiol (E₂) and testosterone (T) in female plasma. Furthermore, parental exposure to 20 μg/L microplastics postponed the incubation time and decreased the hatching rate, heart rate, and body length of the offspring. Overall, the present study demonstrated for the first time that environmentally relevant concentrations of microplastics had adverse effects on the reproduction of marine medaka and might pose a potential threat to marine fish populations.
Afficher plus [+] Moins [-]The zebrafish embryotoxicity test (ZET) for nanotoxicity assessment: from morphological to molecular approach Texte intégral
2019
Pereira, Aryelle Canedo | Gomes, Tania | Ferreira Machado, Mônica Rodrigues | Rocha, Thiago Lopes
The zebrafish embryotoxicity test (ZET) for nanotoxicity assessment: from morphological to molecular approach Texte intégral
2019
Pereira, Aryelle Canedo | Gomes, Tania | Ferreira Machado, Mônica Rodrigues | Rocha, Thiago Lopes
Nanotechnology and use of nanomaterials (NMs) improve life quality, economic growth and environmental health. However, the increasing production and use of NMs in commercial products has led to concerns about their potential toxicity on human and environment health, as well as its toxicological classification and regulation. In this context, there is an urgent need to standardize and validate procedures for nanotoxicity testing. Since the zebrafish embryotoxicity test (ZET) has been indicated as a suitable approach for the toxicity assessment of traditional and emergent pollutants, the aim of this review is to summarize the existing literature on embryotoxic and teratogenic effects of NMs on zebrafish. In addition, morphological changes in zebrafish embryos induced by NMs were classified in four reaction models, allowing classification of the mode of action and toxicity of different types of NM. Revised data showed that the interaction and bioaccumulation of NMs on zebrafish embryos were associated to several toxic effects, while the detoxification process was limited. In general, NMs induced delayed hatching, circulatory changes, pigmentation and tegumentary alterations, musculoskeletal disorders and yolk sac alterations on zebrafish embryos. Recommendations for nanotoxicological tests are given, including guidance for future research. This review reinforces the use of the ZET as a suitable approach to assess the health risks of NM exposure.
Afficher plus [+] Moins [-]The zebrafish embryotoxicity test (ZET) for nanotoxicity assessment: from morphological to molecular approach Texte intégral
2019
Pereira, Aryelle Canedo | Gomes, Tânia | Ferreira Machado, Mônica Rodrigues | Rocha, Thiago Lopes
Embargo until 28 June 2021 | Nanotechnology and use of nanomaterials (NMs) improve life quality, economic growth and environmental health. However, the increasing production and use of NMs in commercial products has led to concerns about their potential toxicity on human and environment health, as well as its toxicological classification and regulation. In this context, there is an urgent need to standardize and validate procedures for nanotoxicity testing. Since the zebrafish embryotoxicity test (ZET) has been indicated as a suitable approach for the toxicity assessment of traditional and emergent pollutants, the aim of this review is to summarize the existing literature on embryotoxic and teratogenic effects of NMs on zebrafish. In addition, morphological changes in zebrafish embryos induced by NMs were classified in four reaction models, allowing classification of the mode of action and toxicity of different types of NM. Revised data showed that the interaction and bioaccumulation of NMs on zebrafish embryos were associated to several toxic effects, while the detoxification process was limited. In general, NMs induced delayed hatching, circulatory changes, pigmentation and tegumentary alterations, musculoskeletal disorders and yolk sac alterations on zebrafish embryos. Recommendations for nanotoxicological tests are given, including guidance for future research. This review reinforces the use of the ZET as a suitable approach to assess the health risks of NM exposure. | publishedVersion
Afficher plus [+] Moins [-]Plasma concentrations of organohalogenated contaminants in white-tailed eagle nestlings – The role of age and diet Texte intégral
2019
Løseth, Mari Engvig | Briels, Nathalie | Eulaers, Igor | Nygård, Torgeir | Malarvannan, Govindan | Poma, Giulia | Covaci, Adrian | Herzke, Dorte | Bustnes, Jan Ove | Lepoint, Gilles | Jenssen, Bjørn Munro | Jaspers, Veerle L.B.
Plasma concentrations of organohalogenated contaminants in white-tailed eagle nestlings – The role of age and diet Texte intégral
2019
Løseth, Mari Engvig | Briels, Nathalie | Eulaers, Igor | Nygård, Torgeir | Malarvannan, Govindan | Poma, Giulia | Covaci, Adrian | Herzke, Dorte | Bustnes, Jan Ove | Lepoint, Gilles | Jenssen, Bjørn Munro | Jaspers, Veerle L.B.
Concentrations of organohalogenated contaminants (OHCs) can show significant temporal and spatial variation in the environment and wildlife. Most of the variation is due to changes in use and production, but environmental and biological factors may also contribute to the variation. Nestlings of top predators are exposed to maternally transferred OHCs in the egg and through their dietary intake after hatching. The present study investigated spatial and temporal variation of OHCs and the role of age and diet on these variations in plasma of Norwegian white-tailed eagle (Haliaeetus albicilla) nestlings. The nestlings were sampled at two locations, Smøla and Steigen, in 2015 and 2016. The age of the nestlings was recorded (range: 44 – 87 days old) and stable carbon and nitrogen isotopes (δ¹³C and δ¹⁵N) were applied as dietary proxies for carbon source and trophic position, respectively. In total, 14 polychlorinated biphenyls (PCBs, range: 0.82 – 59.05 ng/mL), 7 organochlorinated pesticides (OCPs, range: 0.89 – 52.19 ng/mL), 5 polybrominated diphenyl ethers (PBDEs, range: 0.03 – 2.64 ng/mL) and 8 perfluoroalkyl substances (PFASs, range: 4.58 – 52.94 ng/mL) were quantified in plasma samples from each location and year. The OHC concentrations, age and dietary proxies displayed temporal and spatial variations. The age of the nestlings was indicated as the most important predictor for OHC variation as the models displayed significantly decreasing plasma concentrations of PCBs, OCPs, and PBDEs with increasing age, while concentrations of PFASs were significantly increasing with age. Together with age, the variations in PCB, OCP and PBDE concentrations were also explained by δ¹³C and indicated decreasing concentrations with a more marine diet. Our findings emphasise age and diet as important factors to consider when investigating variations in plasma OHC concentrations in nestlings.
Afficher plus [+] Moins [-]Plasma concentrations of organohalogenated contaminants in white-tailed eagle nestlings – The role of age and diet Texte intégral
2019
Løseth, M. E. | Briels, N. | Eulaers, I. | Nygård, T. | Malarvannan, G. | Poma, G. | Covaci, A. | Herzke, D. | Bustnes, J. O. | Lepoint, Gilles | Jenssen, B. M. | Jaspers, V. L. B.
peer reviewed | Concentrations of organohalogenated contaminants (OHCs) can show significant temporal and spatial variation in the environment and wildlife. Most of the variation is due to changes in use and production, but environmental and biological factors may also contribute to the variation. Nestlings of top predators are exposed to maternally transferred OHCs in the egg and through their dietary intake after hatching. The present study investigated spatial and temporal variation of OHCs and the role of age and diet on these variations in plasma of Norwegian white-tailed eagle (Haliaeetus albicilla) nestlings. The nestlings were sampled at two locations, Smøla and Steigen, in 2015 and 2016. The age of the nestlings was recorded (range: 44 – 87 days old) and stable carbon and nitrogen isotopes (δ13C and δ15N) were applied as dietary proxies for carbon source and trophic position, respectively. In total, 14 polychlorinated biphenyls (PCBs, range: 0.82 – 59.05 ng/mL), 7 organochlorinated pesticides (OCPs, range: 0.89 – 52.19 ng/mL), 5 polybrominated diphenyl ethers (PBDEs, range: 0.03 – 2.64 ng/mL) and 8 perfluoroalkyl substances (PFASs, range: 4.58 – 52.94 ng/mL) were quantified in plasma samples from each location and year. The OHC concentrations, age and dietary proxies displayed temporal and spatial variations. The age of the nestlings was indicated as the most important predictor for OHC variation as the models displayed significantly decreasing plasma concentrations of PCBs, OCPs, and PBDEs with increasing age, while concentrations of PFASs were significantly increasing with age. Together with age, the variations in PCB, OCP and PBDE concentrations were also explained by δ13C and indicated decreasing concentrations with a more marine diet. Our findings emphasise age and diet as important factors to consider when investigating variations in plasma OHC concentrations in nestlings. © 2018 Elsevier Ltd | 230465
Afficher plus [+] Moins [-]Plasma concentrations of organohalogenated contaminants in white-tailed eagle nestlings – The role of age and diet Texte intégral
2019
Løseth, Mari Engvig | Briels, Nathalie | Eulaers, Igor | Nygård, Torgeir | Malarvannan, Govindan | Poma, Giulia | Covaci, Adrian | Herzke, Dorte | Bustnes, Jan Ove | Lepoint, Gilles | Jenssen, Bjørn Munro | Jaspers, Veerle
Concentrations of organohalogenated contaminants (OHCs) can show significant temporal and spatial variation in the environment and wildlife. Most of the variation is due to changes in use and production, but environmental and biological factors may also contribute to the variation. Nestlings of top predators are exposed to maternally transferred OHCs in the egg and through their dietary intake after hatching. The present study investigated spatial and temporal variation of OHCs and the role of age and diet on these variations in plasma of Norwegian white-tailed eagle (Haliaeetus albicilla) nestlings. The nestlings were sampled at two locations, Smøla and Steigen, in 2015 and 2016. The age of the nestlings was recorded (range: 44 - 87 days old) and stable carbon and nitrogen isotopes (δ13C and δ15N) were applied as dietary proxies for carbon source and trophic position, respectively. In total, 14 polychlorinated biphenyls (PCBs, range: 0.82 - 59.05 ng/mL), 7 organochlorinated pesticides (OCPs, range: 0.89 - 52.19 ng/mL), 5 polybrominated diphenyl ethers (PBDEs, range: 0.03 - 2.64 ng/mL) and 8 perfluoroalkyl substances (PFASs, range: 4.58 - 52.94 ng/mL) were quantified in plasma samples from each location and year. The OHC concentrations, age and dietary proxies displayed temporal and spatial variations. The age of the nestlings was indicated as the most important predictor for OHC variation as the models displayed significantly decreasing plasma concentrations of PCBs, OCPs, and PBDEs with increasing age, while concentrations of PFASs were significantly increasing with age. Together with age, the variations in PCB, OCP and PBDE concentrations were also explained by δ13C and indicated decreasing concentrations with a more marine diet. Our findings emphasise age and diet as important factors to consider when investigating variations in plasma OHC concentrations in nestlings. | acceptedVersion
Afficher plus [+] Moins [-]Ingestion of polyethylene microbeads affects the growth and reproduction of medaka, Oryzias latipes Texte intégral
2019
Chisada, Shinichi | Yoshida, Masao | Karita, Kanae
Research using various species of wild and cultured fish has identified negative effects of short-term exposure to microbeads. Although wild animals might be contaminated with microbeads and/or other pharmaceuticals, data regarding the long-term effects remain limited. To clearly elucidate the effects of microbeads, studies of long-term exposure using animal models are necessary. Our aim was to elucidate the effects of microbeads alone on the growth and fecundity of medaka following long-term exposure (12 weeks). In experiment 1, fish groups (except controls) were temporarily exposed to polyethylene microbeads (10–63 μm diameter) a low dose of 0.065 microbeads-mg/L and high dose of 0.65 microbeads-mg/L. In experiment 2, see-through medaka and fluorescent polyethylene microbeads (10–45 μm diameter) were used to estimate the retention time of ingested microbeads in the digestive tract, which was 4–9 days. The low dose of microbeads did not affect growth but did decrease the number of eggs and the hatching rate. The high dose decreased growth, the number of eggs, and hatching rate. Growth differences were recognized for the first time at 7 weeks, and differences in the number of eggs at 12 weeks. Thus, long-term tests using medaka indicated that microbeads per se exhibit growth inhibition and reproductive toxicity. These effects could be associated with nutritional factors resulting from the long retention time of microbeads in the digestive tract. We also determined the dose that affects only fecundity. This suggests that normal growth of medaka in the wild does not mean the environment is free from microbead contamination. We are thus attempting to identify new biological indexes for monitoring the status of microbead contamination using our system.
Afficher plus [+] Moins [-]Altered Gene expression of ABC transporters, nuclear receptors and oxidative stress signaling in zebrafish embryos exposed to CdTe quantum dots Texte intégral
2019
Tian, Jingjing | Hu, Jia | Liu, Guangxing | Yin, Huancai | Chen, Mingli | Miao, Peng | Bai, Pengli | Yin, Jian
Adenosine triphosphate-binding cassette (ABC) transporters, including P-glycoprotein (Pgp) and multi-resistance associated proteins (Mrps), have been considered important participants in the self-protection of zebrafish embryos against environmental pollutants, but their possible involvement in the efflux and detoxification of quantum dots (QDs), as well as their regulation mechanism are currently unclear. In this work, gene expression alterations of ABC transporters, nuclear receptors, and oxidative stress signaling in zebrafish embryos after the treatment of mercaptopropionic acid (MPA)CdTe QDs and MPA-CdSCdTe QDs were investigated. It was observed that both QDs caused concentration-dependent delayed hatching effects and the subsequent induction of transporters like mrp1&2 in zebrafish embryos, indicating the protective role of corresponding proteins against CdTe QDs. Accompanying these alterations, expressions of nuclear receptors including the pregnane X receptor (pxr), aryl hydrocarbon receptor (ahr) 1b, and peroxisome proliferator-activated receptor (ppar)-β were induced by QDs in a concentration- and time-dependent manner. Moreover, elevated oxidative stress, reflected by the reduction of glutathione (GSH) level and superoxide dismutase (SOD) activities, as well as the dramatic induction of nuclear factor E2 related factor (nrf) 2, was also found. More importantly, alterations of pxr and nrf2 were more pronounced than that of mrps, and these receptors exhibited an excellent correlation with delayed hatching rate in the same embryos (R² > 0.8). Results from this analysis demonstrated that the induction of mrp1 and mrp2 could be important components for the detoxification of QDs in zebrafish embryos. These transporters could be modulated by nuclear receptors and oxidative stress signaling. In addition, up-regulation of pxr and nrf2 could be developed as toxic biomarkers of CdTe QDs.
Afficher plus [+] Moins [-]Integrated thyroid endocrine disrupting effect on zebrafish (Danio rario) larvae via simultaneously repressing type II iodothyronine deiodinase and activating thyroid receptor-mediated signaling following waterborne exposure to trace azocyclotin Texte intégral
2019
Jiao, Fang | Qiao, Kun | Jiang, Yao | Li, Shuying | Zhao, Jinghao | Gui, Wenjun
As a widely used organotin acaricide nowadays, azocyclotin (ACT) could induce thyroidal endocrine disruption in fishes and amphibians, but its dominant disrupting mode remains unknown. In this study, zebrafish were firstly exposed to ACT (0.18–0.36 ng/mL) from 2 hpf (hours post fertilization) to 30 dpf (days post fertilization), and a series of developmental toxicological endpoints and thyroid hormones were measured. Result showed that no developmental toxicity to zebrafish was found in 0.18 and 0.24 ng/mL groups except decreased body weight (30 dpf, 0.24 ng/mL). However, exposed to 0.36 ng/mL ACT led to reductions in heartbeat (48 hpf), hatching rate (72 hpf) and bodyweight (30 dpf). General tendencies of decreases in free T3 but increases in free T4 and reductions in ratio of free T3/T4 were also found, inferring that type II deiodinase (Dio2) was repressed. This inference was confirmed by Western analysis that Dio2 expression reduced by 42.7% after 0.36 ng/mL ACT treatment. Moreover, RNA-Seq analysis implied that exposed to 0.36 ng/mL ACT altered the genome-wide gene expression profiles of zebrafish. Totally 5660 genes (involving 3154 down-regulated and 2596 up-regulated genes) were differentially expressed, and 13 deferentially expressed genes including down-regulated dio2 were significantly enriched in thyroid hormone signaling pathway. Subsequently, an in vitro thyroid receptor-reporter gene assay using GH3 cells was performed to further explore the potential disrupting mechanism. Result showed that luciferase activity slightly increased after exposure to ACT alone or ACT combined with low level T3, but was suppressed when combined with high level T3. It indicted there probably existed a competitive relationship in some extent between ACT and T3 in vivo. Overall, the present study provided preliminary evidences that long-term exposure to trace ACT repressed Dio2 expression, declined T3 and then activated thyroid receptor-mediated signaling, thereby leading to integrated thyroid endocrine disruption in zebrafish larvae.
Afficher plus [+] Moins [-]Dose-dependent transcriptomic responses of zebrafish eleutheroembryos to Bisphenol A Texte intégral
2018
Martínez, Rubén | Esteve-Codina, Anna | Herrero-Nogareda, Laia | Ortiz-Villanueva, Elena | Barata, Carlos | Tauler, Romà | Raldúa, Demetrio | Piña, Benjamin | Navarro-Martín, Laia
Dose-dependent transcriptomic responses of zebrafish eleutheroembryos to Bisphenol A Texte intégral
2018
Martínez, Rubén | Esteve-Codina, Anna | Herrero-Nogareda, Laia | Ortiz-Villanueva, Elena | Barata, Carlos | Tauler, Romà | Raldúa, Demetrio | Piña, Benjamin | Navarro-Martín, Laia
Despite the abundant literature on the adverse effects of Bisphenol A (BPA) as endocrine disruptor, its toxicity mechanisms are still poorly understood. We present here a study of its effects on the zebrafish eleutheroembryo transcriptome at concentrations ranging from 0.1 to 4 mg L⁻¹, this latter representing the lowest observed effect concentration (LOEC) found in our study at three different macroscopical endpoints (survival, hatching and swim bladder inflation). Multivariate data analysis methods identified both monotonic and bi-phasic patterns of dose-dependent responses. Functional analyses of genes affected by BPA exposure suggest an interaction of BPA with different signaling pathways, being the estrogenic and retinoid receptors two likely targets. In addition, we identified an apparently unrelated inhibitory effect on, among others, visual function genes. We interpret our data as the result of a sum of underlying, independent molecular mechanisms occurring simultaneously at the exposed animals, well below the macroscopic LOEC, but related to at least some of the observed morphological alterations, particularly in eye size and yolk sac resorption. Our data supports the idea that the physiological effects of BPA cannot be only explained by its rather weak interaction with the estrogen receptor, and that multivariate analyses are required to analyze the effects of toxicants like BPA, which interact with different cellular targets producing complex phenotypes.
Afficher plus [+] Moins [-]Dose-dependent transcriptomic responses of zebrafish eleutheroembryos to Bisphenol A Texte intégral
2018
Martínez, Rubén | Esteve-Codina, Anna | Herrero-Nogareda, Laia | Ortiz-Villanueva, Elena | Barata Martí, Carlos | Tauler, Romà | Raldúa, Demetrio | Piña, Benjamín | Navarro-Martín, Laia | European Research Council | Ministerio de Economía y Competitividad (España) | Ortiz-Villanueva, Elena [0000-0001-5358-8934] | Barata, Carlos [0000-0002-3360-0729] | Tauler, Romà [0000-0001-8559-9670] | Raldúa, Demetrio [0000-0001-5256-1641] | Piña, Benjamin [0000-0001-9216-2768] | Navarro-Martín, Laia [0000-0001-6554-8833]
Despite the abundant literature on the adverse effects of Bisphenol A (BPA) as endocrine disruptor, its toxicity mechanisms are still poorly understood. We present here a study of its effects on the zebrafish eleutheroembryo transcriptome at concentrations ranging from 0.1 to 4 mg L−1, this latter representing the lowest observed effect concentration (LOEC) found in our study at three different macroscopical endpoints (survival, hatching and swim bladder inflation). Multivariate data analysis methods identified both monotonic and bi-phasic patterns of dose-dependent responses. Functional analyses of genes affected by BPA exposure suggest an interaction of BPA with different signaling pathways, being the estrogenic and retinoid receptors two likely targets. In addition, we identified an apparently unrelated inhibitory effect on, among others, visual function genes. We interpret our data as the result of a sum of underlying, independent molecular mechanisms occurring simultaneously at the exposed animals, well below the macroscopic LOEC, but related to at least some of the observed morphological alterations, particularly in eye size and yolk sac resorption. Our data supports the idea that the physiological effects of BPA cannot be only explained by its rather weak interaction with the estrogen receptor, and that multivariate analyses are required to analyze the effects of toxicants like BPA, which interact with different cellular targets producing complex phenotypes. Estrogenic- and retinoid-like transcriptomic effects of bisphenol A in zebrafish eleutheroembryos and their relationship with morphological alterations. © 2018 Elsevier Ltd | This work was supported by the European Research Council under the European Union's Seventh Framework Programme ( FP/2007–2013 )/ERC Grant Agreement n. 320737 . Some part of this study was also supported by a grant from the Spanish Ministry of Economy and Competitiveness ( CTQ2014-56777-R ) and by a grant ( PT17/0009/0019 ) from ISCIII (Carlos III Health Institute), part of the Spanish Ministry of Economy and Competitiveness, and cofinanced by the European Regional Development Fund (ERDF). LNM was supported by a Beatriu de Pinos Postdoctoral Fellow ( 2013BP-B-00088 ) awarded by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union. RM was supported by a FPU predoctoral fellow from the Spanish Ministry of Education, Culture and Sport (ref. FPU15/03332 ). We would like to thank Ms. Elia Martinez-Prats and David Angelats for helping with the real time qRT-PCRs measurements. Appendix A | Peer reviewed
Afficher plus [+] Moins [-]Perfluorododecanoic acid exposure induced developmental neurotoxicity in zebrafish embryos Texte intégral
2018
Guo, Xiaochun | Zhang, Shengnan | Lu, Shaoyong | Zheng, Binghui | Xie, Ping | Chen, Jun | Li, Guangyu | Liu, Chunsheng | Wu, Qin | Cheng, Houcheng | Sang, Nan
Perfluorododecanoic acid (PFDoA), an artificial perfluorochemical, has been widely distributed in different ambient media and has been reported to have the potential to cause developmental neurotoxicity. However, the specific mechanism is largely unknown. In the current study, zebrafish embryos were treated with 0, 0.24, 1.2, and 6 mg/L PFDoA for 120 h. Exposure to PFDoA causes serious decreases in hatching delay, body length, as well as decreased locomotor speed in zebrafish larvae. Additionally, the acetylcholine (ACh) content as well as acetylcholinesterase (AChE) activity were determined to be significantly downregulated in PFDoA treatment groups. The level of dopamine was upregulated significantly after treating with 1.2 and 6 mg/L of PFDoA. Gene expressions related to the nervous system development were also analyzed, with the exception of the gene mesencephalic astrocyte-derived neurotrophic factor (manf), which is upregulated in the 6 mg/L treatment group. All other genes were significantly downregulated in larvae in the PFDoA group in different degrees. In general, the results demonstrated that PFDoA exposure could result in the disruption of the cholinergic system, dopaminergic signaling, and the central nervous system.
Afficher plus [+] Moins [-]