Affiner votre recherche
Résultats 1-10 de 91
Indirect herbivore biomanipulation may halt regime shift from clear to turbid after macrophyte restoration
2022
Zhang, Chengxiang | Pei, Hongcui | Lu, Cai | Liu, Cunqi | Wang, Wei | Zhang, Xiaobo | Liu, Peizhong | Lei, Guangchun
Eutrophication transforms clear water into turbid water in shallow lakes. Current restoration techniques focus on re-establishing the clear-water state rather than on its maintenance. We investigated the response of submerged macrophytes to temporary grass carp (Ctenopharyngodon idella) and scraping snail (Bellamya aeruginosa) introductions. We also explored the impacts of herbivores on underwater light conditions to identify their long- and short-term potential to halt regime shift from clear to turbid after clear-water state reestablishment. Herbivores reduced both the biomass of submerged macrophytes and accumulated nutrients in the tissue of submerged macrophytes. This potentially avoided the pulse of endogenous nutrient release which would have exceeded the threshold required for the regime shift from clear to turbid. However, herbivores had a non-significant impact on submerged macrophyte-reduced light attenuation coefficient, which has a positive linear relationship with water chlorophyll a. Further, grass carp and snails enhanced the inhibition ratio of submerged macrophytes to phytoplankton by 3.96 and 2.13 times, respectively. Our study provides novel findings on the potential of herbivore introduction as an indirect biomanipulation tool for halting the regime shift of shallow lakes from clear to turbid after the restoration of submerged macrophytes.
Afficher plus [+] Moins [-]Aquatic vascular plants – A forgotten piece of nature in microplastic research
2020
Kalčíková, Gabriela
Research on the interaction of microplastics and aquatic organisms has been mainly focused on the evaluation of various impacts on animals while aquatic vascular plants have been so far understudied. In this commentary, we summarized knowledge about interactions of microplastics with aquatic vascular plants and highlighted potential ecological implications. Based on recent research, microplastics have minimal impacts on plants. However, they are strongly attracted to plant tissues, adsorbed, and accumulated by plants. Several mechanisms drive microplastics adsorption and accumulation; the most possibly electrostatic forces, leaf morphology, and presence of periphyton belong among the most important ones. Adsorbed microplastics on plant tissues are easily ingested by herbivores. Plants can thus represent a viable pathway for microplastics to enter aquatic food webs. On the other hand, the strong interactions of microplastics with plants could be used for their phytostabilization and final removal from the environment. Aquatic vascular plants have thus an important role in the behavior and fate of microplastics in aquatic ecosystems, and therefore, they should also be included in the future microplastic research.
Afficher plus [+] Moins [-]Effects of the manipulation of submerged macrophytes, large zooplankton, and nutrients on a cyanobacterial bloom: A mesocosm study in a tropical shallow reservoir
2020
Amorim, Cihelio A. | Moura, Ariadne N.
Biomanipulation is an efficient tool to control eutrophication and cyanobacterial blooms in temperate lakes. However, the effects of this technique are still unclear for tropical ecosystems. Herein, we evaluated the effects of the biomanipulation on cyanobacterial biomass in a tropical shallow reservoir in Northeast Brazil. A mesocosm experiment was conducted in Tapacurá reservoir (Pernambuco) with eight treatments, in which we factorially manipulated the presence of submerged macrophytes (Ceratophyllum demersum), large herbivorous zooplankton (Sarsilatona serricauda), and nutrients (0.4 mg L⁻¹ of nitrogen and 0.5 mg L⁻¹ of phosphorus). On the first, fifth, and tenth days, we analyzed the total biomass of cyanobacteria, and the morphotypes coccoid, heterocyted filamentous, and non-heterocyted filamentous cyanobacteria; these components were compared through a three-way ANOVA. The bloom was composed mainly of five Microcystis morphospecies (coccoids) and Raphidiopsis raciborskii (heterocyted filaments). On the fifth day of the experiment, the combined addition of macrophytes and zooplankton was more efficient at controlling cyanobacterial biomass. On the tenth day, all macrophyte treatments showed significant cyanobacterial biomass reduction, decreasing up to 84.8%. On the other hand, nutrients and zooplankton, both isolated and combined, had no significant effect. Macrophytes also reduced the biomass of coccoids, heterocyted filaments, and non-heterocyted filaments when analyzed separately on the tenth day. Ceratophyllum demersum was more efficient at controlling the bloom than the addition of large herbivorous zooplankton, which could be related to allelopathy since cyanobacterial biomass was also reduced when nutrients were added. The addition of submerged macrophytes with allelopathic potential, associated with the increase of large herbivorous zooplankton, proved to be an efficient technique for controlling tropical cyanobacterial blooms.
Afficher plus [+] Moins [-]Petroleum hydrocarbon (PHC) uptake in plants: A literature review
2019
Hunt, Lillian J. | Duca, Daiana | Dan, Tereza | Knopper, Loren D.
Crude oil and its constituents can have adverse effects on ecological and human health when released into the environment. The Canadian Council of Ministers of the Environment (CCME) has developed remedial guidelines and a risk assessment framework for both ecological and human exposure to PHC. One of the assumptions used in the derivation of these guidelines is that plants are unable to take up PHC from contaminated soil and therefore subsequent exposure at higher trophic levels is not a concern. However, various studies suggest that plants are indeed able to take up PHC into their tissues. Consumption of plants is a potential exposure pathway in both ecological (e.g., herbivorous and omnivorous birds, and mammals) and human health risk assessments. If plants can uptake PHC, then the current approach for risk assessment of PHC may underestimate exposures to ecological and human receptors. The present review aims to assess whether or not plants are capable of PHC uptake and accumulation. Twenty-one articles were deemed relevant to the study objective and form the basis of this review. Of the 21 primary research articles, 19 reported detectable PHC and/or its constituents in plant tissues. All but five of the 21 articles were published after the publication of the CCME Canada-Wide Standards. Overall, the present literature review provides some evidence of uptake of PHC and its constituents into plant tissues. Various plant species, including some edible plants, were shown to take up PHC from contaminated soil and aqueous media in both laboratory and field studies. Based on the findings of this review, it is recommended that the soil-plant-wildlife/human pathway should be considered in risk assessments to avoid underestimating exposure and subsequent toxicological risks to humans and wildlife.
Afficher plus [+] Moins [-]The effect of nitrogen additions on oak foliage and herbivore communities at sites with high and low atmospheric pollution
2008
Jones, M.E. | Paine, T.D. | Fenn, M.E.
To evaluate plant and herbivore responses to nitrogen we conducted a fertilization study at a low and high pollution site in the mixed conifer forests surrounding Los Angeles, California. Contrary to expectations, discriminant function analysis of oak herbivore communities showed significant response to N fertilization when atmospheric deposition was high, but not when atmospheric deposition was low. We hypothesize that longer-term fertilization treatments are needed at the low pollution site before foliar N nutrition increases sufficiently to affect herbivore communities. At the high pollution site, fertilization was also associated with increased catkin production and higher densities of a byturid beetle that feeds on the catkins of oak. Leaf nitrogen and nitrate were significantly higher at the high pollution site compared to the low pollution site. Foliar nitrate concentrations were positively correlated with abundance of sucking insects, leafrollers and plutellids in all three years of the study.
Afficher plus [+] Moins [-]Negative bottom-up effects of sulfadiazine, but not penicillin and tetracycline, in soil substitute on plants and higher trophic levels
2019
Pufal, Gesine | Memmert, Jörg | Leonhardt, Sara Diana | Minden, Vanessa
Veterinary antibiotics are widely used in livestock production and can be released to the environment via manure, affecting non-target organisms. Recent studies provide evidence that antibiotics can adversely affect both plants and insects but whether antibiotics in soil also affect trophic interactions is unknown.We tested whether antibiotics grown in sand as soil substitute with environmentally relevant concentrations of penicillin, sulfadiazine and tetracycline affect the survival of aphids feeding on plants (two crop and one non-crop plant species). Apera spica-venti, Brassica napus, and Triticum aestivum individuals were infested with aphids that were monitored over four weeks. We did not observe effects of penicillin or tetracycline on plants or aphids. However, sulfadiazine treatments reduced plant growth and increased mortality in the two tested grass species, but not in B. napus. Sulfadiazine subsequently decreased aphid density indirectly through reduced host plant biomass. We thus show that an antibiotic at realistic concentrations in a soil substitute can affect several trophic levels, i.e. plants and herbivores. This study contributes to the environmental risk assessment of veterinary antibiotics as it implies that their use potentially affects plant-insect interactions at environmentally relevant concentrations.
Afficher plus [+] Moins [-]First account of plastic pollution impacting freshwater fishes in the Amazon: Ingestion of plastic debris by piranhas and other serrasalmids with diverse feeding habits
2019
Andrade, Marcelo C. | Winemiller, Kirk O. | Barbosa, Priscilla S. | Fortunati, Alessia | Chelazzi, David | Cincinelli, Alessandra | Giarrizzo, Tommaso
Reported here is the first evidence of plastic ingestion by freshwater fishes in the Amazon. Plastic bags, bottles, fishing gear, and other products are entering Amazonian water bodies and degrade into meso- and micro-plastic particles that may be ingested, either directly or indirectly via food chains, by fishes. Examination of stomach contents from 172 specimens of 16 serrasalmid species from lower Xingu River Basin revealed consumption of plastic particles by fishes in each of three trophic guilds (herbivores, omnivores, carnivores). Overall, about one quarter of specimens and 80% of species analyzed had ingested plastic particles ranging from 1 to 15 mm in length. Fourier transform infrared spectroscopy indicated 12 polymer types, including 27% identified as polyethylene, 13% polyvinyl chloride, 13% polyamide, 13% polypropylene, 7% poly(methyl methacrylate), 7% rayon, 7% polyethylene terephtalate, and 13% a blend of polyamide and polyethylene terephtalate. Dimensions of ingested plastic particles varied among trophic guilds, even though the frequency and mass of ingested particles were not significantly different among fishes with different feeding habits.
Afficher plus [+] Moins [-]Sublethal insecticide exposure of an herbivore alters the response of its predator
2019
Müller, Thorben | Gesing, Matthias Alexander | Segeler, Markus | Muller, Caroline
Sublethal insecticide exposure poses risks for many non-target organisms and is a challenge for successful implementation of integrated pest management (IPM) programs. Next to detrimental effects of short-term insecticide exposure on fitness-related traits of organisms, also properties such as chemical signaling traits can be altered, which mediate intra- and interspecific communication. We investigated the effects of different durations of larval sublethal exposure to the pyrethroid lambda-cyhalothrin on performance traits of larvae and adults of the herbivorous mustard leaf beetle, Phaedon cochleariae. Moreover, by applying a direct contact and olfactometer bioassays, we determined the reaction of a generalist predator, the ant Myrmica rubra, towards insecticide-exposed and unexposed herbivore larvae and their secretions. Already short-term sublethal insecticide exposure of a few days caused a prolonged larval development and a reduced adult body mass of males. These effects may result from an insecticide-induced reduction in energy reserves. Furthermore, ants responded more frequently to insecticide-exposed than to unexposed larvae of P. cochleariae and their secretions. This increased responsiveness of ants towards insecticide-exposed larvae may be due to an insecticide-induced change in synthesis of chrysomelidial and epichrysomelidial, the dominant compounds of the larval secretion, which act defensive against various generalist predators. In conclusion, the results highlight that short-term insecticide exposure can impair the fitness of an herbivorous species due to both direct toxic effects and an increased responsiveness of predators. Consequently, exposure of single non-target species can have consequences for ecological communities in both natural habitats and IPM programs.
Afficher plus [+] Moins [-]Endocrine disrupting chemicals in wild freshwater fishes: Species, tissues, sizes and human health risks
2019
Zhou, Xinyi | Yang, Zhaoguang | Luo, Zhoufei | Li, Haipu | Chen, Guoyao
Increasing attention has been devoted to the adverse effects of endocrine disrupting chemicals (EDCs) on aquatic environments, such as water, sediment and sludge. To date, few studies have investigated the bio-accumulative characteristics of EDCs in different tissues of diverse wild freshwater fish species and their combined impacts on human health. Five EDCs were investigated in the muscle, liver, gill and, especially, gonad of three fish species collected from the Xiangjiang River, southern China. Carnivorous Siniperca Chuatsi or omnivorous Cyprinus Carpio accumulated higher contents of bisphenol A (BPA) and estrone than herbivorous Parabramis Pekinensis in muscle. Furthermore, 4-n-nonylphenol and estrone were found at higher levels and more frequently in the liver, implying that the liver played an important role in basic metabolism for accumulation, biotransformation and excretion of EDCs. Highest concentrations of BPA found in the gonad revealed that the BPA may pose a serious threat to the reproductive system of aquatic organisms. The mean liver/muscle concentration ratios of 4-n-nonylphenol, BPA, estrone and 17α-ethynyl estradiol confirmed the prolonged exposure of the fish to these EDCs. In addition, the relationships between the fish sizes and the EDC concentrations analyzed by Pearson correlation analysis implied that the bioaccumulation of diethylstilbestrol and BPA increased with the growth of Parabramis Pekinensis, and there was a balance between the uptake rate and elimination rate of EDCs in Siniperca Chuatsi and Cyprinus Carpio. Most importantly, the cumulative impacts of combined EDCs on human health by fish consumption were evaluated. The total estradiol equivalent quantity of estrogens was higher than that of phenols. Also, based on the results of the Monte-Carlo simulation, the 95th percentile values of the total estimated daily intakes from consuming the three freshwater fish species from the Xiangjiang River were higher than the acceptable daily intake.
Afficher plus [+] Moins [-]Recycle food wastes into high quality fish feeds for safe and quality fish production
2016
Wong, Ming-Hung | Mo, Wing-Yin | Choi, Wai-Ming | Cheng, Zhang | Man, Yu-Bon
The amount of food waste generated from modern societies is increasing, which has imposed a tremendous pressure on its treatment and disposal. Food waste should be treated as a valuable resource rather than waste, and turning it into fish feeds would be a viable alternative. This paper attempts to review the feasibility of using food waste to formulate feed pellets to culture a few freshwater fish species, such as grass carp, grey mullet, and tilapia, under polyculture mode (growing different species in the same pond). These species occupy different ecological niches, with different feeding modes (i.e., herbivorous, filter feeding, etc.), and therefore all the nutrients derived from the food waste could be efficiently recycled within the ecosystem. The problems facing environmental pollution and fish contamination; the past and present situation of inland fish culture (focusing on South China); upgrade of food waste based feed pellets by adding enzymes, vitamin-mineral premix, probiotics (yeast), prebiotics, and Chinese medicinal herbs into feeds; and potential health risks of fish cultivated by food waste based pellets are discussed, citing some local examples. It can be concluded that appropriate portions of different types of food waste could satisfy basic nutritional requirements of lower trophic level fish species such as grass carp and tilapia. Upgrading the fish pellets by adding different supplements mentioned above could further elevated the quality of feeds, leading to higher growth rates, and enhanced immunity of fish. Health risk assessments based on the major environmental contaminants (mercury, PAHs and DDTs) in fish flesh showed that fish fed food waste based pellets are safer for consumption, when compared with those fed commercial feed pellets.
Afficher plus [+] Moins [-]