Affiner votre recherche
Résultats 1-10 de 67
Understanding the spatiotemporal pollution dynamics of highly fragile montane watersheds of Kashmir Himalaya, India
2021
Bhat, Sami Ullah | Khanday, Shabir A. | Islam, Sheikh Tajamul | Sabha, Inam
Pollution of riverine ecosystems through the multidimensional impact of human footprints around the world poses a serious challenge. Research studies that communicate potential repercussions of landscape structure metrics on snowmelt riverine water quality particularly, in climatically fragile Himalayan watersheds are very scarce. Though, worldwide, grasping the influence of land-use practices on water quality (WQ) has received renewed attention yet, the relevance of spatial scale linked to landscape pattern is still elusive due to its heterogenic nature across diverse geomorphic regions. In this work, therefore, we tried to capture the insights on landscape-aquascape interface by juxtapositioning the impacts of landscape structure pattern on snowmelt stream WQ of the whole Jhelum River Basin (JRB) under three varying spatial scales viz., watershed scale, riparian corridor (1000 m wide) and reach buffer (500 m wide). The percentage of landscape pattern composition and configuration metrics in the JRB were computed in GIS utilizing Landsat-8 OLI/TIRS satellite image having 30 m resolution. To better explicate the influence of land-use metrics on riverine WQ with space and time, we used Redundancy analysis (RDA) and multilinear regression (MLR) modeling. MLR selected land-use structure metrics revealed the varied response of WQ parameters to multi-scale factors except for total faecal coliform bacteria (TC) which showed perpetual presence. The reach-scale explained slightly better (76%) variations in WQ than riparian (75%) and watershed (70%) scales. Likewise, across seasonal scale, autumn (75%), winter (83%), and summer (77%) captured the most WQ variation at catchment, riparian, and reach scales respectively. We observed impairing WQ linkages with agriculture, built-up and barren rocky areas across watersheds, besides, pastures in riparian buffer areas, and fragmentation of landscape patches at the reach scale. Due to little appearance of spatial scale differences, a multi scale perspective landscape planning is emphasized to ensure future sustainability of Kashmir Himalayan water resources.
Afficher plus [+] Moins [-]Vertical profile of aerosols in the Himalayas revealed by lidar: New insights into their seasonal/diurnal patterns, sources, and transport
2021
Xiang, Yan | Zhang, Tianshu | Liu, Jianguo | Wan, Xin | Loewen, Mark | Chen, Xintong | Kang, Shichang | Fu, Yibin | Lv, Lihui | Liu, Wenqing | Cong, Zhiyuan
Atmospheric aerosols play a crucial role in climate change, especially in the Himalayas and Tibetan Plateau. Here, we present the seasonal and diurnal characteristics of aerosol vertical profiles measured using a Mie lidar, along with surface black carbon (BC) measurements, at Mt. Qomolangma (QOMS), in the central Himalayas, in 2018–2019. Lidar-retrieved profiles of aerosols showed a distinct seasonal pattern of aerosol loading (aerosol extinction coefficient, AEC), with a maximum in the pre-monsoon (19.8 ± 22.7 Mm⁻¹ of AEC) and minimum in the summer monsoon (7.0 ± 11.2 Mm⁻¹ of AEC) seasons. The diurnal variation characteristics of AEC and BC were quite different in the non-monsoon seasons with enriched aerosols being maintained from 00:00 to 10:00 in the pre-monsoon season. The major aerosol types at QOMS were identified as background, pollution, and dust aerosols, especially during the pre-monsoon season. The occurrence of pollution events influenced the vertical distribution, seasonal/diurnal patterns, and types of aerosols. Source contribution of BC based on the weather research and forecasting chemical model showed that approximately 64.2% ± 17.0% of BC at the QOMS originated from India and Nepal in South Asia during the non-monsoon seasons, whereas approximately 47.7% was from local emission sources in monsoon season. In particular, the high abundance of BC at the QOMS in the pre-monsoon season was attributed to biomass burning, whereas anthropogenic emissions were the likely sources during the other seasons. The maximum aerosol concentration appeared in the near-surface layer (approximately 4.3 km ASL), and high concentrations of transported aerosols were mainly found at 4.98, 4.58, 4.74, and 4.88 km ASL in the pre-monsoon, monsoon, post-monsoon, and winter seasons, respectively. The investigation of the vertical profiles of aerosols at the QOMS can help verify the representation of aerosols in the air quality model and satellite products and regulate the anthropogenic disturbance over the Tibetan Plateau.
Afficher plus [+] Moins [-]Soil-air partitioning of semivolatile organic compounds in the Lesser Himalaya region: Influence of soil organic matter, atmospheric transport processes and secondary emissions
2021
After decades of imposed regulations about reducing the primary emissions of persistent organic pollutants (POPs), these pollutants are still present in the environment. Soils are important repositories of such persistent semivolatile organic contaminants (SVOCs), and it is assumed that SVOCs sequestered in these reservoirs are being re-mobilized due to anthropogenic influence. In this study, concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) in soil and air, their fugacities, fluxes and the soil-air partition coefficient (KSA) were determined for three different land cover types (glacial, remote/mountainous and urban) of the Lesser Himalayan Region (LHR). The concentrations of OCPs, PCBs and PBDEs in soils and air ranged between 0.01 and 2.8, 0.81–4.8, 0.089–0.75 ng g⁻¹; 0.2–106, 0.027–182, and 0.011–7.26 pg m⁻³, respectively. The levels of SVOCs in the soil were correlated with soil organic matter (SOM) indicating that SOM is a substrate for the organic pollutants in soils. The Clausius-Clapeyron plots between ln P and inverse of temperature (1000/T) suggested that long range atmospheric transport was the major input source of PBDEs and higher chlorinated PCBs over the LHR. The uneven and wide distribution of local sources in LHR and up-slope enrichment of SVOCs explained the spatial variability and altitudinal patterns. The soils near mountain and urban lakes act as local sinks of SVOCs such as β-HCH, pp΄-DDT, CB-28, -118, −153, BDE-47, -99, and −154, with soil-air exchange fluxes tending more toward deposition. However, the soils near glacial lakes acted as local sources of more volatile congeners of α-HCH, γ-HCH, op′-DDT, pp′-DDE and lower to medium chlorinated PCBs such as CB-18, -28, −53, −42 and BDE-47, -99, with soil-air exchange tending more toward volatilization flux.
Afficher plus [+] Moins [-]Mercury isotopes in frozen soils reveal transboundary atmospheric mercury deposition over the Himalayas and Tibetan Plateau
2020
Huang, Jie | Kang, Shichang | Yin, Runsheng | Guo, Junming | Lepak, Ryan | Mika, Sillanpää | Tripathee, Lekhendra | Sun, Shiwei
The concentration and isotopic composition of mercury (Hg) were studied in frozen soils along a southwest-northeast transect over the Himalaya-Tibet. Soil total Hg (HgT) concentrations were significantly higher in the southern slopes (72 ± 54 ng g−1, 2SD, n = 21) than those in the northern slopes (43 ± 26 ng g−1, 2SD, n = 10) of Himalaya-Tibet. No significant relationship was observed between HgT concentrations and soil organic carbon (SOC), indicating that the HgT variation was not governed by SOC. Soil from the southern slopes showed significantly negative mean δ202Hg (−0.53 ± 0.50‰, 2SD, n = 21) relative to those from the northern slopes (−0.12 ± 0.40‰, 2SD, n = 10). The δ202Hg values of the southern slopes are more similar to South Asian anthropogenic Hg emissions. A significant correlation between 1/HgT and δ202Hg was observed in all the soil samples, further suggesting a mixing of Hg from South Asian anthropogenic emissions and natural geochemical background. Large ranges of Δ199Hg (−0.45 and 0.24‰) were observed in frozen soils. Most of soil samples displayed negative Δ199Hg values, implying they mainly received Hg from gaseous Hg(0) deposition. A few samples had slightly positive odd-MIF, indicating precipitation-sourced Hg was more prevalent than gaseous Hg(0) in certain areas. The spatial distribution patterns of HgT concentrations and Hg isotopes indicated that Himalaya-Tibet, even its northern part, may have been influenced by transboundary atmospheric Hg pollution from South Asia.
Afficher plus [+] Moins [-]WITHDRAWN: New insights into the bioaccumulation of persistent organic pollutants in remote alpine lakes located in Himalayas, Pakistan
2020
Nawab, Javed | Wang, Xiaoping | K̲h̲ān, Sardār | Tang, Yu-Ting | Rahman, Ziaur | ʻAlī, ʻĀbid | Dotel, Jagdish | Li, Gang
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause.The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Afficher plus [+] Moins [-]Black carbon aerosol quantification over north-west Himalayas: Seasonal heterogeneity, source apportionment and radiative forcing
2020
Kant, Yogesh | Shaik, Darga Saheb | Mitra, Debashis | Chandola, H.C. | Suresh Babu, S. | Chauhan, Prakash
Continuous measurements of Black Carbon (BC) aerosol mass concentrations were carried at Dehradun (30.33°N, 78.04°E, 700 m amsl), a semi-urban site in the foothills of north-westHimalayas, India during January 2011–December 2017. We reported both the BC seasonal variations as well as mass concentrations from fossil fuel combustion (BCff) and biomass burning (BCbb) sources. Annual mean BC exhibited a strong seasonal variability with maxima during winter (4.86 ± 0.78 μg m⁻³) followed by autumn (4.18 ± 0.54 μg m⁻³), spring (3.93 ± 0.75 μg m⁻³) and minima during summer (2.41 ± 0.66 μg m⁻³). Annual averaged BC mass concentrations were 3.85 ± 1.16 μg m⁻³ varying from 3.29 to 4.37 μg m⁻³ whereas BCff and BCbb ranged from 0.11 to 7.12 μg m⁻³ and 0.13–3.6 μg m⁻³. The percentage contributions from BCff and BCbb to total BC are 66% and 34% respectively, indicating relatively higher contribution from biomass burning as compared to other locations in India. This is explained using potential source contribution function (PSCF) and concentration weighted trajectories (CWT) analysis which reveals the potential sources of BC originating from the north-west and eastern parts of IGP and the western part of the Himalayas that are mostly crop residue burning and forest fire regions in India. The annual mean ARF at top-of-atmosphere (TOA), at surface (SUR), and within the atmosphere (ATM) were found to be −14.84 Wm⁻², −43.41 Wm⁻², and +28.57 Wm⁻² respectively. To understand the impact of columnar aerosol burden on ARF, the radiative forcing efficiency (ARFE) was estimated and averaged values were −31.81, −91.63 and 59.82 Wm⁻² τ⁻¹ for TOA, SUR and ATM respectively. The high ARFE within the atmosphere indicates the dominance of absorbing aerosol (BC and dust) over Northwest Himalayas.
Afficher plus [+] Moins [-]Role of black carbon in soil distribution of organochlorines in Lesser Himalayan Region of Pakistan
2018
ʻAlī, ʻUs̲mān | Riaz, Rahat | Sweetman, Andrew James | Jones, K. C. (Kevin C.) | Li, Jun | Zhang, Gan | Malik, Riffat Naseem
Black carbon and total organic carbon (TOC) along with organochlorines (OCs) were analyzed in soils from four sampling zones of Lesser Himalayan Region based on source proximity/anthropogenic influences along the altitude. CTO-375 method was used for BC analysis while OCs were analyzed by GC-MS/MS system. BC and TOC ranged between 0.16–1.77 and 6.8–41.3 mg g−1 while those of OCPs and PCBs ranged between 0.69 and 5.77 and 0.12–2.55 ng g−1, respectively. ∑DDTs were the dominant (87.9%) among OCPs while tri- and tetra- (65.5%) homologue groups among PCBs. Hexa-PCBs, however also showed higher contribution (20.4%) in the region. Source diagnostic ratios of DDE + DDD/DDT (0.1–1.53) indicated both fresh and old input while α-HCH/γ-HCH (0.19–2.49) showed presence of lindane in the region. Higher concentration of OCs were observed in Zone C at altitudinal range of 737–975 masl that are close to the human influences and potential sources of POPs. The results of linear regression analysis revealed potential input of BC in soil distribution of OC concentrations in the region.
Afficher plus [+] Moins [-]Spatial distribution of dust–bound trace elements in Pakistan and their implications for human exposure
2016
Eqani, Syed Ali Musstjab Akber Shah | Kanwal, Ayesha | Bhowmik, Avit Kumar | Sohail, Mohammad | Riz̤vānullāh, | Ali, Syeda Maria | Alamdar, Ambreen | Ali, Nadeem | Fasola, Mauro | Shen, Heqing
This study aims to assess the spatial patterns of selected dust-borne trace elements alongside the river Indus Pakistan, their relation with anthropogenic and natural sources, and the potential risk posed to human health. The studied elements were found in descending concentrations: Mn, Zn, Pb, Cu, Ni, Cr, Co, and Cd. The Index of Geo-accumulation indicated that pollution of trace metals were higher in lower Indus plains than on mountain areas. In general, the toxic elements Cr, Mn, Co and Ni exhibited altitudinal trends (P < 0.05). The few exceptions to this trend were the higher values for all studied elements from the northern wet mountainous zone (low lying Himalaya). Spatial PCA/FA highlighted that the sources of different trace elements were zone specific, thus pointing to both geological influences and anthropogenic activities. The Hazard Index for Co and for Mn in children exceeded the value of 1 only in the riverine delta zone and in the southern low lying zone, whereas the Hazard Index for Pb was above the bench mark for both children and adults (with few exceptions) in all regions, thus indicating potential non-carcinogenic health risks. These results will contribute towards the environmental management of trace metal(s) with potential risk for human health throughout Pakistan.
Afficher plus [+] Moins [-]Characteristics, source apportionment and long-range transport of black carbon at a high-altitude urban centre in the Kashmir valley, North-western Himalaya
2022
Bhat, Mudasir Ahmad | Romshoo, Shakil Ahmad | Beig, Gufran
Six years of data (2012–2017) at an urban site-Srinagar in the Northwest Himalaya were used to investigate temporal variability, meteorological influences, source apportionment and potential source regions of BC. The daily BC concentration varies from 0.56 to 40.16 μg/m³ with an inter-annual variation of 4.20–7.04 μg/m³ and is higher than majority of the Himalayan urban locations. High mean annual BC concentration (6.06 μg/m³) is attributed to the high BC observations during winter (8.60 μg/m³) and autumn (8.31 μg/m³) with a major contribution from Nov (13.88 μg/m³) to Dec (13.4 μg/m³). A considerable inter-month and inter-seasonal BC variability was observed owing to the large changes in synoptic meteorology. Low BC concentrations were observed in spring and summer (3.14 μg/m³ and 3.21 μg/m³), corresponding to high minimum temperatures (6.6 °C and 15.7 °C), wind speed (2.4 and 1.6 m/s), ventilation coefficient (2262 and 2616 m²/s), precipitation (316.7 mm and 173.3 mm) and low relative humidity (68% and 62%). However, during late autumn and winter, frequent temperature inversions, shallow PBL (173–1042 m), stagnant and dry weather conditions cause BC to accumulate in the valley. Through the observation period, two predominant diurnal BC peaks were observed at ⁓9:00 h (7.75 μg/m³) and ⁓21:00 h (6.67 μg/m³). Morning peak concentration in autumn (11.28 μg/m³) is ⁓2–2.5 times greater than spring (4.32 μg/m³) and summer (5.23 μg/m³), owing to the emission source peaks and diurnal boundary layer height. Diurnal BC concentration during autumn and winter is 65% and 60% higher than spring and summer respectively. During autumn and winter, biomass burning contributes approximately 50% of the BC concentration compared to only 10% during the summer. Air masses transport considerable BC from the Middle East and northern portions of South Asia, especially the Indo-Gangetic Plains, to Srinagar, with serious consequences for climate, human health, and the environment.
Afficher plus [+] Moins [-]Light absorption and fluorescence characteristics of water-soluble organic compounds in carbonaceous particles at a typical remote site in the southeastern Himalayas and Tibetan Plateau
2021
Zhang, Chao | Chen, Meilian | Kang, Shichang | Yan, Fangping | Han, Xiaowen | Gautam, Sangita | Hu, Zhaofu | Zheng, Huijun | Chen, Pengfei | Gao, Shaopeng | Wang, Pengling | Li, Yizhong
Carbonaceous particles play an important role in climate change, and an increase in their emission and deposition causes glacier melting in the Himalayas and the Tibetan Plateau (HTP). This implies that studying their basic characteristics is crucial for a better understanding of the climate forcing observed in this area. Thus, we investigated characteristics of carbonaceous particles at a typical remote site of southeastern HTP. Organic carbon and elemental carbon concentrations at this study site were 1.86 ± 0.84 and 0.18 ± 0.09 μg m⁻³, respectively, which are much lower than those reported for other frequently monitored stations in the same region. Thus, these values reflect the background characteristics of the study site. Additionally, the absorption coefficient per mass (α/ρ) of water-soluble organic carbon (WSOC) at 365 nm was 0.60 ± 0.19 m² g⁻¹, with the highest and lowest values corresponding to the winter and monsoon seasons, respectively. Multi-dimensional fluorescence analysis showed that the WSOC consisted of approximately 37% and 63% protein and humic-like components, respectively, and the latter was identified as the component that primarily determined the light absorption ability of the WSOC, which also showed a significant relationship with some major ions, including SO²⁻₄, K⁺, and Ca²⁺, indicating that combustion activities as well as mineral dust were two important contributors to WSOC at the study site.
Afficher plus [+] Moins [-]