Affiner votre recherche
Résultats 1-10 de 36
Effects of bisphenol A exposure during cardiac cell differentiation
2021
Escarda-Castro, Enrique | Herráez, María Paz | Lombó, Marta
Heart development requires a precise temporal regulation of gene expression in cardiomyoblasts. Therefore, the transcriptional changes in differentiating cells can lead to congenital heart diseases. Although the genetic mutations underlie most of these alterations, exposure to environmental contaminants, such as bisphenol A (BPA), has been recently considered as a risk factor as well. In this study we investigated the genotoxic and epigenotoxic effects of BPA throughout cardiomyocyte differentiation. H9c2 cells (rat myoblasts) were exposed to 10 and 30 μM BPA before and during the last two days of cardiac-driven differentiation. Then, we have analysed the phenotypic and molecular modifications (at transcriptional, genetic and epigenetic level). The results showed that treated myoblasts developed a skeletal muscle cell-like phenotype. The transcriptional changes induced by BPA in genes codifying proteins involved in heart differentiation and function depend on the window of exposure to BPA. The exposure before differentiation repressed the expression of heart transcription factors (Hand2 and Gata4), whereas exposure during differentiation reduced the expression of cardiac-specific genes (Tnnt2, Myom2, Sln, and Atp2a1). Additionally, significant effects were observed regarding DNA damage and histone acetylation levels after the two periods of BPA exposure: in cells exposed to the toxicant the percentage of DNA repair foci (formed by the co-localization of γH2AX and 53BP1) increased in a dose-dependent manner, whereas the treatment with the toxicant triggered a decrease in the epigenetic marks H3K9ac and H3K27ac. Our in vitro results reveal that BPA seriously interferes with the process of cardiomyocyte differentiation, which could be related to the reported in vivo effects of this toxicant on cardiogenesis.
Afficher plus [+] Moins [-]Increased m6A modification of RNA methylation related to the inhibition of demethylase FTO contributes to MEHP-induced Leydig cell injury☆
2021
Zhao, Tianxin | Wang, Junke | Wu, Yuhao | Han, Lindong | Chen, Jiadong | Wei, Yuexin | Shen, Lianju | Long, Chunlan | Wu, Shengde | Wei, Guanghui
N⁶-methyladenosine (m6A) modification, the most prevalent form of RNA methylation, modulates gene expression post-transcriptionally. Di-(2-ethylhexyl) phthalate (DEHP) is a common environmental endocrine disrupting chemical that induces testicular injury due to the inhibition of the demethylase fat mass and obesity-associated protein (FTO) and increases the m6A modification. How FTO-mediated m6A modification in testicular Leydig cell injury induced by DEHP remains unclear. Here, the TM3 Leydig cell line was treated with mono-(2-ethylhexyl) phthalate (MEHP), the main metabolite of DEHP in the body, as well as FB23-2, an inhibitor of FTO. Decreased levels of testosterone in the culture supernatant, significantly increased apoptosis, and a remarkable upregulation of global m6A modification were found in both TM3 cells treated with MEHP and FB23-2. Transcriptome sequencing showed that both treatments significantly induced apoptosis-associated gene expression. Methylated RNA immunoprecipitation sequencing showed that the Leydig cell injury induced by upregulated m6A modification could be associated with multiple physiological disorders, including histone acetylation, reactive oxygen species biosynthesis, MAPK signaling pathway, hormone secretion regulation, autophagy regulation, and male gonadal development. Overall, the inhibition of FTO-mediated up-regulation of m6A could be involved in MEHP-induced Leydig cell apoptosis.
Afficher plus [+] Moins [-]Triclocarban exposure affects mouse oocyte in vitro maturation through inducing mitochondrial dysfunction and oxidative stress
2020
Ding, Zhi-Ming | ʻAdīl, Jamīl Aḥmad | Meng, Fei | Chen, Fan | Wang, Yong-Shang | Zhao, Xin-Zhe | Zhang, Shou-Xin | Miao, Yi-Liang | Xiong, Jia-Jun | Huo, Li-Jun
Triclocarban (TCC), a broad-spectrum lipophilic antibacterial agent, is the main ingredient of personal and health care products. Nonetheless, its ubiquitous presence in the environment has been established to negatively affect the reproduction in humans and animals. In this work, we studied the possible toxic effects of TCC on mouse oocytes maturation in vitro. Our findings revealed that TCC-treated immature mouse oocytes had a significantly reduced rate of polar body extrusion (PBE) compared to that of control. Further study demonstrated that the cell cycle progression and cytoskeletal dynamics were disrupted after TCC exposure, which resulted in the continuous activation of spindle assembly checkpoint (SAC). Moreover, TCC-treated oocytes had mitochondrial damage, reduced ATP content, and decreased mitochondrial membrane potential (MMP). Furthermore, TCC exposure induced oxidative stress and subsequently triggered early apoptosis in mouse oocytes. Besides, the levels of histone methylation were also affected, as indicated by increased H3K27me2 and H3K27me3 levels. In summary, our results revealed that TCC exposure disrupted mouse oocytes maturation through affecting cell cycle progression, cytoskeletal dynamics, oxidative stress, early apoptosis, mitochondria function, and histone modifications in vitro.
Afficher plus [+] Moins [-]Neutrophil extracellular traps promote cadmium chloride-induced lung injury in mice
2019
Wang, Chaoqun | Wei, Zhengkai | Han, Zhen | Wang, Jingjing | Zhang, Xu | Wang, Yanan | Liu, Quan | Yang, Zhengtao
Cadmium (Cd) is a ubiquitous toxic heavy metal derived mainly from industrial processes. In industrialized societies, individuals are exposed to a plethora of sources of Cd pollution. Cd can trigger serious diseases such as rheumatoid arthritis (RA) and chronic obstructive pulmonary disease (COPD) by the over-activating immune system. As an effector mechanism in innate immunity, neutrophil extracellular traps (NETs) not only play an important role in defending against infection but also lead to tissue damage. However, the role of NETs in Cd-induced lung damage process has not been previously studied. In this study, we aimed to investigate the potential effects of Cd-induced NETs on lung injury in vivo and further to clarify the molecular mechanisms of Cd-induced NETs formation. In vivo, Cd treatment destroyed the structural integrity of lung tissue and significantly increased the levels of NETs in the bronchoalveolar lavage fluid (BALF). The known NETs inhibitor DNase I ameliorated pathologic changes and significantly decreased levels of NETs in BALF, which suggesting the curial role of NETs in Cd-induced lung injury. Further investigation showed that Cd could significantly trigger NETs formation, which is composed of DNA backbone decorated with histones (H3) and neutrophils elastase (NE). The inhibitors of NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways significantly reduced the formation of NETs, and western blotting analysis also showed that Cd significantly increased the phosphorylation of p38 and ERK1/2 signaling pathways. Above results confirmed that NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways were related to Cd-induced NETs formation. In conclusion, NETs was involved in Cd-induced lung injury, and the mechanisms of Cd-induced NETs formation was via activating NADPH oxidase, ERK1/2 and p38 MAPK-signaling pathways, which might provide a new perspective in Cd-induced lung injury.
Afficher plus [+] Moins [-]Current evidence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context
2019
Horemans, Nele | Spurgeon, David J. | Lecomte-Pradines, Catherine | Saenen, Eline | Bradshaw, Clare | Oughton, Deborah | Rasnaca, Ilze | Kamstra, Jorke H. | Adam-Guillermin, Christelle
The issue of potential long-term or hereditary effects for both humans and wildlife exposed to low doses (or dose rates) of ionising radiation is a major concern. Chronic exposure to ionising radiation, defined as an exposure over a large fraction of the organism's lifespan or even over several generations, can possibly have consequences in the progeny. Recent work has begun to show that epigenetics plays an important role in adaptation of organisms challenged to environmental stimulae. Changes to so-called epigenetic marks such as histone modifications, DNA methylation and non-coding RNAs result in altered transcriptomes and proteomes, without directly changing the DNA sequence. Moreover, some of these environmentally-induced epigenetic changes tend to persist over generations, and thus, epigenetic modifications are regarded as the conduits for environmental influence on the genome.Here, we review the current knowledge of possible involvement of epigenetics in the cascade of responses resulting from environmental exposure to ionising radiation. In addition, from a comparison of lab and field obtained data, we investigate evidence on radiation-induced changes in the epigenome and in particular the total or locus specific levels of DNA methylation. The challenges for future research and possible use of changes as an early warning (biomarker) of radiosensitivity and individual exposure is discussed. Such a biomarker could be used to detect and better understand the mechanisms of toxic action and inter/intra-species susceptibility to radiation within an environmental risk assessment and management context.
Afficher plus [+] Moins [-]Male exposure to bisphenol a impairs spermatogenesis and triggers histone hyperacetylation in zebrafish testes
2019
González-Rojo, S. | Lombó, M. | Fernández-Díez, C. | Herráez, M.P.
Bisphenol A (BPA) is an endocrine disruptor whose ubiquitous presence in the environment has been related with impairment of male reproduction. BPA can cause both transcriptomic and epigenetic changes during spermatogenesis. To evaluate the potential effects of male exposure to BPA, adult zebrafish males were exposed during spermatogenesis to doses of 100 and 2000 μg/L, which were reported in contaminated water bodies and higher than those allowed for human consumption. Fertilization capacity and survival at hatching were analysed after mating with untreated females. Spermatogenic progress was analysed through a morphometrical study of testes and apoptosis was evaluated by TUNEL assay. Testicular gene expression was evaluated by RT-qPCR and epigenetics by using ELISA and immunocytochemistry. In vitro studies were performed to investigate the role of Gper. Chromatin fragmentation and the presence of transcripts were also evaluated in ejaculated sperm. Results on testes from males treated with the highest dose showed a significant decrease in spermatocytes, an increase in apoptosis, a downregulation of ccnb1 and sycp3, all of which point to an alteration of spermatogenesis and to meiotic arrest and an upregulation of gper1 and esrrga receptors. Additionally, BPA at 2000 μg/L caused missregulation of epigenetic remodelling enzymes transcripts in testes and promoted DNA hypermethylation and H3K27me3 demethylation. BPA also triggered an increase in histone acetyltransferase activity, which led to hyperacetylation of histones (H3K9ac, H3K14ac, H4K12ac). In vitro reversion of histone acetylation changes using a specific GPER antagonist, G-36, suggested this receptor as mediator of histone hyperacetylation. Males treated with the lower dose only showed an increase in some histone acetylation marks (H3K14ac, H4K12ac) but their progeny displayed very limited survival at hatching, revealing the deleterious effects of unbalanced paternal epigenetic information. Furthermore, the highest dose of BPA led to chromatin fragmentation, promoting direct reproductive effects, which are incompatible with embryo development.
Afficher plus [+] Moins [-]Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida
2015
Novo, Marta | Lahive, Elma | Díez-Ortiz, María | Matzke, Marianne | Morgan, Andrew J. | Spurgeon, David J. | Svendsen, Claus | Kille, Peter
Use of nanotechnology products is increasing; with silver (Ag) nanoparticles particularly widely used. A key uncertainty surrounding the risk assessment of AgNPs is whether their effects are driven through the same mechanism of action that underlies the toxic effects of Ag ions. We present the first full transcriptome study of the effects of Ag ions and NPs in an ecotoxicological model soil invertebrate, the earthworm Eisenia fetida. Gene expression analyses indicated similar mechanisms for both silver forms with toxicity being exerted through pathways related to ribosome function, sugar and protein metabolism, molecular stress, disruption of energy production and histones. The main difference seen between Ag ions and NPs was associated with potential toxicokinetic effects related to cellular internalisation and communication, with pathways related to endocytosis and cilia being significantly enriched. These results point to a common final toxicodynamic response, but initial internalisation driven by different exposure routes and toxicokinetic mechanisms.
Afficher plus [+] Moins [-]Identification of a novel function of a component in the jasmonate signaling pathway for intensive pesticide degradation in rice and environment through an epigenetic mechanism
2021
Ma, Li Ya | Zhai, Xiao Yan | Qiao, Yu Xin | Zhang, Ai Ping | Zhang, Nan | Liu, Jintong | Yang, Hong
Developing a biotechnical system with rapid degradation of pesticide is critical for reducing environmental, food security and health risks. Here, we investigated a novel epigenetic mechanism responsible for the degradation of the pesticide atrazine (ATZ) in rice crops mediated by the key component CORONATINE INSENSITIVE 1a (OsCOI1a) in the jasmonate-signaling pathway. OsCOI1a protein was localized to the nucleus and strongly induced by ATZ exposure. Overexpression of OsCOI1a (OE) significantly conferred resistance to ATZ toxicity, leading to the improved growth and reduced ATZ accumulation (particularly in grains) in rice crops. HPLC/Q-TOF-MS/MS analysis revealed increased ATZ-degraded products in the OE plants, suggesting the occurrence of vigorous ATZ catabolism. Bisulfite-sequencing and chromatin immunoprecipitation assays showed that ATZ exposure drastically reduced DNA methylation at CpG context and histone H3K9me2 marks in the upstream of OsCOI1a. The causal relationships between the DNA demethylation (hypomethylatioin), OsCOI1a expression and subsequent detoxification and degradation of ATZ in rice and environment were well established by several lines of biological, genetic and chemical evidence. Our work uncovered a novel regulatory mechanism implicated in the defense linked to the epigenetic modification and jasmonate signaling pathway. It also provided a modus operandi that can be used for metabolic engineering of rice to minimize amounts of ATZ in the crop and environment.
Afficher plus [+] Moins [-]Sodium fluoride exposure triggered the formation of neutrophil extracellular traps
2020
Wang, Jing-Jing | Wei, Zheng-Kai | Han, Zhen | Liu, Zi-Yi | Zhang, Yong | Zhu, Xing-Yi | Li, Xiao-Wen | Wang, Kai | Yang, Zheng-Tao
In recent years, numerous studies paid more attention to the molecular mechanisms associated with fluoride toxicity. However, the detailed mechanisms of fluoride immunotoxicity in bovine neutrophils remain unclear. Neutrophil extracellular traps (NETs) is a novel immune mechanism of neutrophils. We hypothesized that sodium fluoride (NaF) can trigger NETs activation and release, and investigate the related molecular mechanisms during the process. We exposed peripheral blood neutrophils to 1 mM NaF for 120 min in bovine neutrophils. The results showed that NaF exposure triggered NET-like structures decorated with histones and granule proteins. Quantitative measurement of NETs content correlated positively with the concentration of NaF. Mechanistically, NaF exposure increased reactive oxygen species (ROS) levels and phosphorylation levels of ERK, p38, whereas inhibiting the activities of superoxide dismutase (SOD) and catalase (CAT) compared with control neutrophils. NETs formation is induced by NaF and this effect was inhibited by the inhibitors diphenyleneiodonium chloride (DPI), U0126 and SB202190. Our findings described the potential importance of NaF-triggered NETs related molecules, which might help to extend the current understanding of NaF immunotoxicity.
Afficher plus [+] Moins [-]Regulatory loop between lncRNA FAS-AS1 and DNMT3b controls FAS expression in hydroquinone-treated TK6 cells and benzene-exposed workers
2020
Yuan, Qian | Zhang, Haiqiao | Pan, Zhijie | Ling, Xiaoxuan | Wu, Minhua | Gui, Zhiming | Chen, Jialong | Peng, Jianming | Liu, Zhidong | Tan, Qiang | Huang, Dongsheng | Xiu, Liangchang | Chen, Wen | Shi, Zhizhen | Liu, Linhua
Hydroquinone (HQ), one of the main metabolites of benzene, is a well-known human leukemogen. However, the specific mechanism of how benzene or HQ contributes to the development of leukemia is unknown. In a previous study, we demonstrated the upregulation of DNA methyltransferase (DNMT) expression in HQ-induced malignant transformed TK6 (HQ-TK6) cells. Here, we investigated whether a regulatory loop between the long noncoding RNA FAS-AS1 and DNMT3b exists in HQ-TK6 cells and benzene-exposed workers. We found that the expression of FAS-AS1 was downregulated in HQ-TK6 cells and workers exposed to benzene longer than 1.5 years via histone acetylation, and FAS-AS1 expression was negatively correlated with the time of benzene exposure. Restoration of FAS-AS1 in HQ-TK6 cells promoted apoptosis and inhibited tumorigenicity in female nude mice. Interestingly, treatment with a DNMT inhibitor (5-aza-2-deoxycytidine), histone deacetylase inhibitor (trichostatin A), or DNMT3b knockout led to increased FAS-AS1 through increased H3K27ac protein expression in HQ-TK6 cells, and DNMT3b knockout decreased H3K27ac and DNMT3b enrichment to the FAS-AS1 promoter region, which suggested that DNMT3b and/or histone acetylation involve FAS-AS1 expression. Importantly, restoration of FAS-AS1 resulted in reduced expression of DNMT3b and SIRT1 and increased expression of FAS in both HQ-TK6 cells and xenograft tissues. Moreover, the average DNMT3b expression in 17 paired workers exposed to benzene within 1.5 years was decreased, but that of the remaining 103 paired workers with longer exposure times was increased. Conversely, DNMT3b was negatively correlated with FAS-AS1 expression. Both FAS-AS1 and DNMT3b influenced the enrichment of H3K27ac in the FAS promoter region by regulating the expression of SIRT1, consequently upregulating FAS expression. Taken together, these observations demonstrate crosstalk between FAS-AS1 and DNMT3b via a mutual inhibition loop and indicate a new mechanism by which FAS-AS1 regulates the expression of FAS in benzene-related carcinogenesis.
Afficher plus [+] Moins [-]