Affiner votre recherche
Résultats 1-10 de 265
Accumulation and partitioning of toxic trace metal(loid)s in phytoliths of wheat grown in a multi-element contaminated soil
2022
Liu, Linan | Song, Zhaoliang | Li, Qiang | Ellam, Rob M. | Tang, Jingchun | Wang, Yangyang | Sarkar, Binoy | Wang, Hailong
Cropland contamination by toxic trace metal (loid)s (TTMs) has attracted increasing attention due to the serious consequential threat to crop quality and human health. Mitigation of plant TTM stress by silica amendment has been proposed recently. However, the relationship between the siliceous structure of phytoliths and TTMs in plants, and the environmental implications of phytolith-occluded trace metal (loid)s (PhytTMs) remain unclear. This study assessed the accumulation of five metal (loid)s, including lead (Pb), zinc (Zn), cadmium (Cd), copper (Cu) and arsenic (As), in the organic tissues and phytoliths of wheat grown in a mixed-TTM contaminated soil under both lightly and heavily contaminated conditions. The results show that the concentrations of plant TTMs and PhytTMs were significantly (p < 0.05) positively correlated, and higher in heavily contaminated wheats than those in lightly contaminated ones. The bio-enrichment factors between phytoliths and organic tissues were higher for As (1.83), Pb (0.27) and Zn (0.30) than for Cd (0.03) and Cu (0.14), implying that As, Pb and Zn were more readily co-precipitated with silicon (Si) in phytolith structures than Cd and Cu. Network analysis of the relationship between soil and plant elements with PhytTMs showed that severe contamination could impact the homeostasis of elements in plants by altering the translocation of TTMs between soils, plants, and phytoliths. The accumulation of TTMs in phytoliths was affected by the capacity of Si deposition in tissues and chelation of TTMs with silica, which could impact the role of PhytTMs in global biogeochemical TTM cycles.
Afficher plus [+] Moins [-]Multigenerational inspections of environmental thermal perturbations promote metabolic trade-offs in developmental stages of tropical fish
2022
Wang, Min-Chen | Furukawa, Fumiya | Wang, Jingwei | Peng, Hui-Wen | Lin, Ching-Chun | Lin, Tzu-Hao | Tseng, Yung-Che
Global warming both reduces global temperature variance and increases the frequency of extreme weather events. In response to these ambient perturbations, animals may be subject to trans- or intra-generational phenotype modifications that help to maintain homeostasis and fitness. Here, we show how temperature-associated transgenerational plasticity in tilapia affects metabolic trade-offs during developmental stages under a global warming scenario. Tropical tilapia reared at a stable temperature of 27 °C for a decade were divided into two temperature-experience groups for four generations of breeding. Each generation of one group was exposed to a single 15 °C cold-shock experience during its lifetime (cold-experienced CE group), and the other group was kept stably at 27 °C throughout their lifetimes (cold-naïve CN group). The offspring at early life stages from the CE and CN tilapia were then assessed by metabolomics-based profiling, and the results implied that parental cold-experience might affect energy provision during reproduction. Furthermore, at early life stages, progeny may be endowed with metabolic traits that help the animals cope with ambient temperature perturbations. This study also applied the feature rescaling and Uniform Manifold Approximation and Projection (UMAP) to visualize metabolic dynamics, and the result could effectively decompose the complex omic-based datasets to represent the energy trade-off variability. For example, the carbohydrate to free amino acid conversion and enhanced compensatory features appeared to be hypothermic-responsive traits. These multigenerational metabolic effects suggest that the tropical ectothermic tilapia may exhibit transgenerational phenotype plasticity, which could optimize energy allocation under ambient temperature challenges. Knowledge about such metabolism-related transgenerational plasticity effects in ectothermic aquatic species may allow us to better predict how adaptive mechanisms will affect fish populations in a climate with narrow temperature variation and frequent extreme weather events.
Afficher plus [+] Moins [-]Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation
2022
Liu, Yinglin | Cao, Xuesong | Yue, Le | Wang, Chuanxi | Tao, Mengna | Wang, Zhenyu | Xing, Baoshan
Salinity stress seriously threatens agricultural productivity and food security worldwide. This work reports on the mechanisms of alleviating salinity stress by cerium oxide nanomaterials (CeO2 NMs) in maize (Zea may L.). Soil-grown maize plants were irrigated with deionized water or 100 mM NaCl solution as the control or the salinity stress treatment. CeO2 NMs (1, 5, 10, 20, and 50 mg/L) with antioxidative enzyme mimicking activities were foliarly applied on maize leaves for 7 days. The morphological, physiological, biochemical, and transcriptomic responses of maize were evaluated. Specifically, salinity stress significantly reduced 59.0% and 63.8% in maize fresh and dry biomass, respectively. CeO₂ NMs at 10, 20, and 50 mg/L improved the salt tolerance of maize by 69.5%, 69.1%, and 86.8%, respectively. Also, 10 mg/L CeO₂ NMs maintained Na⁺/K⁺ homeostasis, enhanced photosynthetic efficiency by 30.8%, and decreased reactive oxygen species (ROS) level by 58.5% in salt-stressed maize leaves. Transcriptomic analysis revealed that the antioxidative defense system-related genes recovered to the normal control level after CeO₂ NMs application, indicating that CeO₂ NMs eliminated ROS through their intrinsic antioxidative enzyme properties. The down-regulation of genes related to lignin synthesis in the phenylpropanoid biosynthesis pathway accelerated leaf cell elongation. In addition, CeO₂ NMs increased the rhizobacteria richness and diversity through the increment of carbon source in root exudates and improved the abundance of halotolerant plant growth-promoting rhizobacteria (HT-PGPR). Importantly, the yield of salt-stressed maize was enhanced by 293.3% after 10 mg/L CeO₂ NMs foliar application. These results will provide new insights for the application of CeO₂ NMs in management to reduce the salinity-caused crop loss.
Afficher plus [+] Moins [-]Role of RNA m6A modification in titanium dioxide nanoparticle-induced acute pulmonary injury: An in vitro and in vivo study
2022
Ruan, Fengkai | Liu, Changqian | Wang, Yi | Cao, Xisen | Tang, Zhen | Xu, Jiaying | Zeng, Jie | Yin, Hanying | Zheng, Naying | Yang, Chunyan | Zuo, Zhenghong | He, Chengyong
RNA N⁶-methyladenosine (m⁶A) modification regulates the cell stress response and homeostasis, but whether titanium dioxide nanoparticle (nTiO₂)-induced acute pulmonary injury is associated with the m⁶A epitranscriptome and the underlying mechanisms remain unclear. Here, the potential association between m⁶A modification and the bioeffects of several engineered nanoparticles (nTiO₂, nAg, nZnO, nFe₂O₃, and nCuO) were verified thorough in vitro experiments. nFe₂O₃, nZnO, and nTiO₂ exposure significantly increased the global m⁶A level in A549 cells. Our study further revealed that nTiO₂ can induce m⁶A-mediated acute pulmonary injury. Mechanistically, nTiO₂ exposure promoted methyltransferase-like 3 (METTL3)-mediated m⁶A signal activation and thus mediated the inflammatory response and IL-8 release through the degeneration of anti-Mullerian hormone (AMH) and Mucin5B (MUC5B) mRNAs in a YTH m⁶A RNA-binding protein 2 (YTHDF2)-dependent manner. Moreover, nTiO₂ exposure stabilized METTL3 protein by the lipid reactive oxygen species (ROS)-activated ERK1/2 pathway. The scavenging of ROS with ferrostatin-1 (Fer-1) alleviates the ERK1/2 activation, m⁶A upregulation, and the inflammatory response caused by nTiO₂ both in vitro and in vivo. In conclusion, our study demonstrates that m⁶A is a potential intervention target for alleviating the adverse effects of nTiO₂-induced acute pulmonary injury in vitro and in vivo, which has far-reaching implications for protecting human health and improving the sustainability of nanotechnology.
Afficher plus [+] Moins [-]Dual effects of nZVI on maize growth and water use are positively mediated by arbuscular mycorrhizal fungi via rhizosphere interactions
2022
Yang, Yu-Miao | Naseer, Minha | Zhu, Ying | Zhu, Shuang-Guo | Wang, Song | Wang, Bao-Zhong | Wang, Jing | Zhu, Hao | Wang, Wei | Tao, Hong-Yan | Xiong, You-Cai
Nanoscale zero-valent iron (nZVI) might generate positive and negative effects on plant growth, since it acts as either hazardous or growth-promotion role. It is still unclear whether such dual roles can be mediated by arbuscular mycorrhizal fungi (AMF) in plant-AMF symbiosis. We first identified that in 1.5 g kg⁻¹ nZVI (≤1.5 g kg⁻¹ positively), maize biomass was increased by 15.83%; yet in 2.0 g kg⁻¹ nZVI, it turned to be declined by 6.83%, relative to non-nZVI condition (CK, p < 0.05), showing a negative effect. Interestingly, the inoculation of AMF massively improved biomass by 45.18% in 1.5 g kg⁻¹ nZVI, and relieved the growth inhibition by 2.0 g kg⁻¹ nZVI. The event of water use efficiency followed similar trend as that of biomass. We found that proper concentration of nZVI can positively interact with rhizosphere AMF carrier, enabling more plant photosynthetic carbon to be remobilized to mycorrhiza. The scanning of transmission electron microscopy showed that excessive nZVI can infiltrate into root cortical cells and disrupt cellular homeostasis mechanism, significantly increasing iron content in roots by 76.01% (p < 0.05). Simultaneously, the images of scanning electron microscopy showed that nZVI were attached on root surface to form an insoluble iron ion (Fe³⁺) layer, hindering water absorption. However, they were efficiently immobilized and in situ intercepted by extraradical hyphae in mycorrhizal-nZVI symbiosis, lowering iron translocation efficiency by 6.07% (p < 0.05). Herein, the optimized structure remarkably diminished aperture blockage at root surface and improved root activities by 30.06% (p < 0.05). Particularly, next-generation sequencing demonstrated that appropriate amount of nZVI promoted the colonization and development of Funneliformis mosseae as dominant species in rhizosphere, confirming the positive interaction between AMF and nZVI, and its regulatory mechanism. Therefore, dual effects of nZVI can be actively mediated by AMF via rhizosphere interactions. The findings provided new insights into the safe and efficient application of nanomaterials in agriculture.
Afficher plus [+] Moins [-]Phytoremediation of DEHP and heavy metals co-contaminated soil by rice assisted with a PGPR consortium: Insights into the regulation of ion homeostasis, improvement of photosynthesis and enrichment of beneficial bacteria in rhizosphere soil
2022
Liu, Anran | Wang, Wenjing | Chen, Xiancao | Zheng, Xiaoyan | Fu, Wenting | Wang, Gang | Ji, Jing | Guan, Chunfeng
The coexistence of di (2-ethylhexyl) phthalate (DEHP), Cd, and Zn poses a serious challenge to soil ecosystems. This study aimed to evaluate the phytoremediation potential of rice assisted with a plant growth promoting rhizobacteria (PGPR) consortium for the remediation of DEHP, Cd, and Zn co-contaminated soil. The consortium consisted of four bacterial strains, all of which exhibited Cd–Zn resistance and DEHP degradability. The results showed that the rice assisted by the bacterial consortium dissipated 86.1% DEHP while removing 76.0% Cd²⁺ and 92.2% Zn²⁺ from soil within 30 d. The presence of the PGPR consortium promoted plant growth and improved soil enzymatic activity, which may have helped enhance the removal of DEHP and heavy metals from the soil. Moreover, the application of the consortium modified the bacterial community and increased the relative abundance of bacteria related to DEHP degradation (Sphingomonas, Xanthobacteraceae), heavy metal immobilization (Massilia), and soil nutrient cycling (Nitrospira, Vicinamibacterales), which promoted plant growth and the removal of DEHP and heavy metals from soil. Notably, the DEHP and heavy metal contents in rice decreased substantially during the phytoremediation process. Therefore, the PGPR consortium could be beneficial for enhancing the removal of DEHP and heavy metals from the soil, without inducing the accumulation of these pollutants in rice. In general, this study confirmed that the combined use of rice and the PGPR consortium could remedy DEHP and heavy metal co-contaminated soil economically and ecologically without simultaneously posing risks for rice consumption.
Afficher plus [+] Moins [-]Exposure to dechlorane 602 induces perturbation of gut immunity and microbiota in female mice
2022
Li, Yunping | Guo, Tai L. | Xie, Heidi Qunhui | Xu, Li | Liu, Yin | Zheng, Liping | Yu, Shuyuan | Chen, Guomin | Ji, Jiajia | Jiang, Shuai | Xu, Dan | Hang, Xiaoming | Zhao, Bin
The homeostasis of gut immunity and microbiota are associated with the health of the gut. Dechlorane 602 (Dec 602) with food web magnification potential has been detected in daily food. People who were orally exposed to Dec 602 may encounter increased risk of health problems in the gut. In order to reveal the influence of short-term exposure of Dec 602 on gut immunity and microbiota, adult female C57BL/6 mice were administered orally with Dec 602 (low/high doses: 1.0/10.0 μg/kg body weight per day) for 7 days. Lymphocytes were examined by flow cytometry. Gut microbiota was measured by 16S rRNA gene sequencing. Results showed that fecal IgA was upregulated after exposure to the high dose of Dec 602, suggesting that there might be inflammation in the gut. Then, changes of immune cells in mesenteric lymph nodes and colonic lamina propria were examined. We found that exposure to the high dose of Dec 602 decreased the percentages of the anti-inflammatory T regulatory cells in mesenteric lymph nodes. In colonic lamina propria, the production of gut protective cytokine interleukin-22 by CD4⁺ T cells was decreased, and a decreased trend of interleukin-22 production was also observed in type 3 innate lymphoid cells in the high dose group. Furthermore, an altered microbiota composition toward inflammation in the gut was observed after exposure to Dec 602. Additionally, the altered microbiota correlated with changes of immune parameters, suggesting that there were interactions between influenced microbiota and immune parameters after exposure to Dec 602. Taken together, short-term exposure to Dec 602 induced gut immunity and microbiota perturbations, and this might be the mechanisms for Dec 602 to elicit inflammation in the gut.
Afficher plus [+] Moins [-]Gradual effects of gradient concentrations of polystyrene nanoplastics on metabolic processes of the razor clams
2021
Jiang, Qichen | Zhang, Wenyi
With the widespread occurrence and accumulation of plastic waste in the world, plastic pollution has become a serious threat to ecosystem and ecological security, especially to estuarine and coastal areas. Understanding the impacts of changing nanoplastics concentrations on aquatic organisms living in these areas is essential for revealing the ecological effects caused by plastic pollution. In the present study, we revealed the effects of exposure to gradient concentrations (0.005, 0.05, 0.5 and 50 mg/L) of 75 nm polystyrene nanoplastics (PS-NPs) for 48 h on metabolic processes in muscle tissue of a bivalve, the razor clam Sinonovacula constricta, via metabolomic and transcriptomic analysis. Our results showed that PS-NPs caused dose-dependent adverse effects on energy reserves, membrane lipid metabolism, purine metabolism and lysosomal hydrolases. Exposure to PS-NPs reduced energy reserves, especially lipids. Membrane lipid metabolism was sensitive to PS-NPs with contents of phosphocholines (PC), phosphatidylethanolamines (PE) and phosphatidylserines (PS) increasing and degradation being inhibited in all concentrations. High concentrations of PS-NPs altered the purine metabolism via increasing contents of guanosine triphosphate (GTP) and adenine, which may be needed for DNA repair, and consuming inosine and hypoxanthine. During exposure to low concentrations of PS-NPs, lysosomal hydrolases in S. constricta, especially cathepsins, were inhibited while this influence was improved transitorily in 5 mg/L of PS-NPs. These adverse effects together impacted energy metabolism in S. constricta and disturbed energy homeostasis, which was manifested by the low levels of acetyl-CoA in high concentrations of PS-NPs. Overall, our results revealed the effects of acute exposure to gradient concentrations of PS-NPs on S. constricta, especially its metabolic process, and provide perspectives for understanding the toxicity of dynamic plastic pollution to coastal organisms and ecosystem.
Afficher plus [+] Moins [-]Cadmium induced cerebral toxicity via modulating MTF1-MTs regulatory axis
2021
Talukder, Milton | Bi, Shao-Shuai | Jin, Hai-Tao | Ge, Jing | Zhang, Cong | Lv, Mei-Wei | Li, Jin-Long
Metal-responsive transcription factor 1 (MTF1) participates in redox homeostasis and heavy metals detoxification via regulating the expression of metal responsive genes. However, the exact role of MTF1 in Cd-induced cerebral toxicity remains unclear. Herein, we explored the mechanism of Cd-elicited cerebral toxicity through modulating MTF1/MTs pathway in chicken cerebrum exposed to different concentrations of Cd (35 mg, 70 mg, and 140 mg/kg CdCl₂) via diet. Notably, cerebral tissues showed varying degrees of microstructural changes under Cd exposure. Cd exposure significantly up-regulated the expression of metal transporters (DMT1, ZIP8, and ZIP10) with concomitant elevated Cd level, as determined by ICP-MS. Cd significantly altered other cerebral biometals concentrations (particularly, Zn, Fe, Se, Cr, Mo, and Pb) and redox balance, resulting in increased cerebral oxidative stress. More importantly, Cd exposure suppressed MTF1 mRNA and nuclear protein levels and its target metal-responsive genes, notably metallothioneins (MT1 and MT2), and Fe and Cu transporter genes (FPN1, ATOX1, and XIAP). Moreover, Cd disrupted the regulation of expression of selenoproteome (particularly, GPxs and SelW), and cerebral Se level. Overall, our data revealed that molecular mechanisms associated with Cd-induced cerebral damage might include over-expression of DMT1, ZIP8 and ZIP10, and suppression of MTF1 and its main target metal-responsive genes as well as several selenoproteins.
Afficher plus [+] Moins [-]Responses of juvenile fathead minnow (Pimephales promelas) gut microbiome to a chronic dietary exposure of benzo[a]pyrene
2021
DeBofsky, Abigail | Xie, Yuwei | Challis, Jonathan K. | Jain, Niteesh | Brinkmann, Markus | Jones, Paul D. | Giesy, John P.
The microbiome has been described as an additional host “organ” with well-established beneficial roles. However, the effects of exposures to chemicals on both structure and function of the gut microbiome of fishes are understudied. To determine effects of benzo[a]pyrene (BaP), a model persistent organic pollutant, on structural shifts of gut microbiome in juvenile fathead minnows (Pimephales promelas), fish were exposed ad libitum in the diet to concentrations of 1, 10, 100, or 1000 μg BaP g⁻¹ food, in addition to a vehicle control, for two weeks. To determine the link between exposure to BaP and changes in the microbial community, concentrations of metabolites of BaP were measured in fish bile and 16S rRNA amplicon sequencing was used to evaluate the microbiome. Exposure to BaP only reduced alpha-diversity at the greatest exposure concentrations. However, it did alter community composition assessed as differential abundance of taxa and reduced network complexity of the microbial community in all exposure groups. Results presented here illustrate that environmentally-relevant concentrations of BaP can alter the diversity of the gut microbiome and community network connectivity.
Afficher plus [+] Moins [-]