Affiner votre recherche
Résultats 1-10 de 430
Ultraviolet light-activated peroxymonosulfate (UV/PMS) system for humic acid mineralization: Effects of ionic matrix and feasible application in seawater reverse osmosis desalination Texte intégral
2022
Alayande, Abayomi Babatunde | Hong, Seungkwan
The use of membrane-based technology has evolved into an important strategy for supplying freshwater from seawater and wastewater to overcome the problems of water scarcity around the world. However, the presence of natural organic matter (NOM), including humic substances affects the performance of the process. Here, we present a systematic report on the mineralization of humic acid (HA), as a model for NOM, in high concentration of salts using the ultraviolet light-activated peroxymonosulfate (UV/PMS) system as a potential alternative for HA elimination during membrane-based seawater desalination and water treatment processes. Effects of various parameters such as PMS concentration, solution type, pH, anions, and anion-cation matrix on HA mineralization were assessed. The results show that 100%, 78% and 58% of HA (2 mg/L TOC) were mineralized with rate constants of 0.085 min⁻¹, 0.0073 min⁻¹, and 0.0041 min⁻¹ after 180 min reaction time at pH 7 when 0.5 mM PMS was used in deionized water, sodium chloride solution (35,000 ppm) and synthetic seawater, respectively. The reduced efficiency under saline conditions was attributed to the presence of anions in the system that acted as sulfate and hydroxyl radicals’ scavengers. Furthermore, the safety of the treated synthetic seawater was evaluated by analyzing the residual transformed products. Overall, pretreatment with the UV/PMS system mitigated fouling on the RO membrane.
Afficher plus [+] Moins [-]Opposite impact of DOM on ROS generation and photoaging of aromatic and aliphatic nano- and micro-plastic particles Texte intégral
2022
Cao, Runzi | Liu, Xinna | Duan, Jiajun | Gao, Bowen | He, Xiaosong | Nanthi Bolan, | Li, Yang
Dissolved organic matter (DOM) plays a significant role in the photochemical behavior of nano- and micro-plastic particles (NPs/MPs). We investigated the influence of DOM on the mechanism on the photoaging of NPs/MPs with different molecular structures under UV₃₆₅ irradiation in water. DOM components used in this study are mainly humic acid and fulvic acid. The results showed that DOM promoted the weathering of aliphatic NPs/MPs (polypropylene (PP)), but inhibited or had only a minor effect on the photoaging of aromatic NPs/MPs (polystyrene (PS) NPs/MPs, carboxyl-modified PS NPs, amino-modified PS NPs, and polycarbonate MPs). NPs with a large surface area may adsorb sufficient DOM on the particle surfaces through π-π interactions, which competes with NPs for photon absorption sites, thus, can delay the photoaging of PS NPs. Aromatic MPs may release phenolic compounds that quench •OH, thereby weakening the photoaging process. For aliphatic MPs, the detection of peracid, aldehyde, and ketone groups on the polymer surface indicated that DOM promoted weathering of PP MPs, which was primarily because the generation of •OH due to DOM photolysis may attack the polymer by C–C bond cleavage and hydrogen extraction reactions. This study provides insight into the UV irradiation weathering process of NPs/MPs of various compositions and structures, which are globally distributed in water.
Afficher plus [+] Moins [-]Co-transport and co-release of Eu(III) with bentonite colloids in saturated porous sand columns: Controlling factors and governing mechanisms Texte intégral
2022
Accurate prediction of the colloid-driven transport of radionuclides in porous media is critical for the long-term safety assessment of radioactive waste disposal repository. However, the co-transport and corelease process of radionuclides with colloids have not been well documented, the intrinsic mechanisms for colloids-driven retention/transport of radionuclides are still pending for further discussion. Thus the controlling factors and governing mechanisms of co-transport and co-release behavior of Eu(III) with bentonite colloids (BC) were discussed and quantified by combining laboratory-scale column experiments, colloid filtration theory and advection dispersion equation model. The results showed that the role of colloids in facilitating or retarding the Eu(III) transport in porous media varied with cations concentration, pH, and humic acid (HA). The transport of Eu(III) was facilitated by the dispersed colloids under the low ionic strength and high pH conditions, while was impeded by the aggregated colloids cluster. The enhancement of Eu(III) transport was not monotonically risen with the increase of colloids concentration, the most optimized colloids concentration in facilitating Eu(III) transport was approximately 150 mg L⁻¹. HA showed significant promotion on both Eu(III) and colloid transport because of not only its strong Eu(III) complexion ability but also the increased dispersion of HA-coated colloid particles. The HA and BC displayed a synergistic effect on Eu(III) transport, the co-transport occurred by forming the ternary BC-HA-Eu(III) hybrid. The transport patterns could be simulated well with a two-site model that used the advection dispersion equation by reflecting the blocking effect. The retarded Eu(III) on the stationary phase was released and remobilized by the introduction of colloids, or by a transient reduction in cation concentration. The findings are essential for predicting the geological fate and the migration risk of radionuclides in the repository environment.
Afficher plus [+] Moins [-]Promotion of the biodegradation of phenanthrene adsorbed on microplastics by the functional bacterial consortium QY1 in the presence of humic acid: Bioavailability and toxicity evaluation Texte intégral
2022
Zhu, Minghan | Yin, Hua | Yuan, Yibo | Qi, Xin | Liu, Hang | Wei, Xipeng | Luo, Haoyu | Dang, Zhi
The adsorption of hydrophobic organic compounds (HOCs) by microplastics (MPs) has attracted great attention in recent years. However, the ultimate environmental fate of the HOCs sorbed on MPs (HOCs-MPs) is poorly understood. In this work, we investigated the potential influence of the biotransformation process on the environmental fate of phenanthrene (PHE, a model HOC) sorbed on MPs (PHE-MPs) under the existence of humic acid (HA, the main ingredient of dissolved organic matter (DOM)) in the aquatic environment. The results indicated that the adsorption behavior of PHE on MPs decreased its bioavailability and thus inhibited its biotransformation efficiency. However, HA significantly promoted the biodegradation rate and percentage of PHE-MPs. This was probably because HA improved the desorption of PHE from MPs, which promoted the acquisition of PHE by bacteria from the aqueous phase. Further, HA dramatically increased the bacterial community diversity and richness and altered the community composition. The richness of some PHE-degrading bacteria, such as Methylobacillus and Sphingomonas, significantly increased, which may also be an important factor for promoting PHE biodegradation. Molecular ecological network analysis implied that HA enhanced the modularity and complexity of bacterial interaction networks, which was beneficial to maintaining the functional stability of the consortium QY1. Besides, HA decreased the cytotoxicity of functional microbes induced by HOCs-MPs. This work broadens our knowledge of the environmental fate of HOCs-MPs and interactions of MPs, HOCs, DOMs and functional microbial consortiums in aqueous environments.
Afficher plus [+] Moins [-]Enhanced propagation of intracellular and extracellular antibiotic resistance genes in municipal wastewater by microplastics Texte intégral
2022
Cheng, Yuan | Lu, Jiarui | Fu, Shusen | Wang, Shangjie | Senehi, Naomi | Yuan, Qingbin
Microplastics (MPs) are an emerging global concern as they are abundant in the environment and can act as vectors of various contaminants. However, whether and how MPs can be vectors of antibiotic resistance genes (ARGs), especially extracellular ARGs (eARGs), remains far from explicit. This study addresses the adsorption of both intracellular ARGs (iARGs) and eARGs by four types of MPs in municipal wastewater, and then explores the potential horizontal gene transfer of iARGs and eARGs exposed to MPs. Results indicate that though MPs significantly adsorbed both iARGs and eARGs, eARGs were adsorbed with a significantly higher fold enrichment (2.0–5.0 log versus 2.0–3.3 log) and rate (0.0056 min⁻¹ versus 0.0037 min⁻¹) than iARGs. While all four types of MPs adsorbed ARGs, polypropylene MPs showed the highest adsorption capacity for ARGs. Background constituents such as humic acid and antibiotics significantly inhibited adsorption of iARGs, but not eARGs on MPs. The presence of sodium chloride didn't significantly affect adsorption of iARGs or eARGs. The adsorption of ARGs was well explained by the extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) interaction energy profile. Higher eARG adsorption was attributed to a lower energy barrier between MPs and eARGs than that between MPs and iARGs. Exposure to MPs enhanced horizontal gene transfer of both iARGs and eARGs by 1.5 and 2.0 times, respectively. The improved contact potential between donors and recipients, as well as the increased cell permeability of recipients induced the improved horizontal gene transfer by MPs. This study underscores the need to address ARG propagation through adsorption to MPs.
Afficher plus [+] Moins [-]Enhanced removal of per- and polyfluoroalkyl substances in complex matrices by polyDADMAC-coated regenerable granular activated carbon Texte intégral
2022
Ramos, Pia | Singh Kalra, Shashank | Johnson, Nicholas W. | Khor, Chia Miang | Borthakur, Annesh | Cranmer, Brian | Dooley, Gregory | Mohanty, Sanjay K. | Jassby, David | Blotevogel, Jens | Mahendra, Shaily
Granular activated carbon (GAC) has been used to remove per- and polyfluoroalkyl substances (PFASs) from industrial or AFFF-impacted waters, but its effectiveness can be low because adsorption of short-chained PFASs is ineffective and its sites are exhausted rapidly by co-contaminants. To increase adsorption of anionic PFASs on GAC by electrostatic attractions, we modified GAC's surface with the cationic polymer poly diallyldimethylammonium chloride (polyDADMAC) and tested its capacity in complex water matrices containing dissolved salts and humic acid. Amending with concentrations of polyDADMAC as low as 0.00025% enhanced GAC's adsorption capacity for PFASs, even in the presence of competing ions. This suggests that electrostatic interactions with polyDADMAC's quaternary ammonium functional groups helped bind organic and inorganic ions as well as the headgroup of short-chain PFASs, allowing more overall PFAS removal by GAC. Evaluating the effect of polymer dose is important because excessive addition can block pores and reduce overall PFAS removal rather than increase it. To decrease the waste associated with this adsorption strategy by making the adsorbent viable for more than one saturation cycle, a regeneration method is proposed which uses low-power ultrasound to enhance the desorption of PFASs from the polyDADMAC-GAC with minimum disruption to the adsorbent's structure. Re-modification with the polymer after sonication resulted in a negligible decrease in the sorbent's capacity over four saturation rounds. These results support consideration of polyDADMAC-modified GAC as an effective regenerable adsorbent for ex-situ concentration step of both short and long-chain PFASs from real waters with high concentrations of competing ions and low PFAS loads.
Afficher plus [+] Moins [-]Effects of composite environmental materials on the passivation and biochemical effectiveness of Pb and Cd in soil: Analyses at the ex-planta of the Pak-choi root and leave Texte intégral
2022
Wang, An | Wang, Yao | Zhao, Peng | Huang, Zhanbin
Passivation of soil heavy metals using environmental materials is an important method or important in situ remediation measure. There are more studies on inorganic environmental materials for heavy metal passivation, but not enough studies on organic and their composite environmental materials with inorganic ones. In order to reveal the passivation effect of coal-based ammoniated humic acid (CAHA), biochemical humic acid (BHA), biochar (BC) and other organic types and inorganic environmental materials such as zeolites (ZL) on soil heavy metals and their biological effectiveness. The microstructures of these materials were analyzed by Scanning electron microscope (SEM). The main components of the environmental materials were analyzed by Energy dispersive spectrometer (EDS), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction spectrum (XRD) to elucidate the mechanism of passivation of heavy metals in soil by these environmental materials. The study was conducted to investigate the effects of different types of environmental materials and their combinations on the passivation effect and biological effectiveness of Pb and Cd complex contamination in soil by means of soil incubation and pot experiments using single-factor and multifactor multilevel orthogonal experimental designs. Soil incubation experiments proved that the effective state of soil Pb and Cd in T₇ was reduced by 13.40% and 11.07%, respectively. The extreme difference analysis determined the optimized formulation of soil lead and cadmium passivation as BHA: CAHA: BC: ZL = 3.5:5:20:10. The pot experiment proved that the application of composite environmental materials led to the reduction of lead and cadmium content and increase of biomass of Pak-choi, and the optimal dosage of optimized composite environmental materials was 23.1 g/kg.
Afficher plus [+] Moins [-]Simultaneous changes of exogenous dissolved organic matter treated by ozonation in properties and interaction behavior with sulfonamides Texte intégral
2021
Lai, Chaochao | He, Caiwen | Han, Fengxia | Xu, Huayu | Huang, Bin | Dionysiou, Dionysios D. | Pan, Xuejun
Effluent is often treated with ozone before being discharged into a natural water environment. This process will change the interaction between effluent organic matter and pollutants in aquatic environment. The impact of ozonation on complexation between dissolved organic matter in such wastewater and sulfadimidine often found in natural water was studied in laboratory experiments using four types of real wastewater. Ozonation was found to decrease the proportion of organic matter with a molecular weight greater than 5 kDa as well as protein-like, fulvic-like and humic-like components, but except the proportion of hydrophilic components. The aromaticity of the dissolved organic matter was also reduced after ozonation. The complexation of tryptophan and tyrosine with sulfadimidine mainly depends on their hydrophobicity and large molecular weight. Ozonation of fulvic and humic acid tends to produce small and medium molecular weight hydrophilics. The complexation of humic and fulvic acids with sulfadimidine was enhanced by ozonation. Dissolved organic matter, with or without oxidation, were found to weaken sulfadimidine’s inhibition of microbial growth, especially for Aeromonas and Acinetobacter species. This finding will expand our understanding about the impact of advanced treatment processes on the dissolved organic matters’ properties in effluent.
Afficher plus [+] Moins [-]Impacts of bio-stimulants on pyrene degradation, prokaryotic community compositions, and functions Texte intégral
2021
Aḥmad, Manẓūr | Wang, Pandeng | Li, Jia-Ling | Wang, Renfei | Duan, Li | Luo, Xiaoqing | Irfan, Muhammad | Peng, Ziqi | Yin, Lingzi | Li, Wen-Jun
Bio-stimulation of the indigenous microbial community is considered as an effective strategy for the bioremediation of polluted environments. This examination explored the near effects of various bio-stimulants on pyrene degradation, prokaryotic community compositions, and functions using 16S rRNA amplicon sequencing and qPCR. At first, the results displayed significant differences (p < 0.05) between the prokaryotic community structures of the control group, PYR (contains pyrene only), and bio-stimulants amended groups. Among the bio-stimulants, biochar, oxalic acid, salicylate, NPK, and ammonium sulfate augmented the pyrene degradation potential of microbial communities. Moreover, the higher abundance of genera, such as Flavobacterium, Hydrogenophaga, Mycobacterium, Rhodococcus, Flavihumibacter, Pseudomonas, Novosphingobium, etc., across the treatments indicated that these genera play a vital role in pyrene metabolism. Based on the higher abundance of GP-RHD and nidA genes, we speculated that Gram-positive prokaryotic communities are more competent in pyrene dissipation than Gram-negative. Furthermore, the marked abundance of nifH, and pqqC genes in the NPK and SA treatments, respectively, suggested that different bio-stimulants might enrich certain bacterial assemblages. Besides, the significant distinctions (p < 0.05) between the bacterial consortia of HA (humic acid) and SA (sodium acetate) groups from NPK, OX (oxalic acid), UR (urea), NH4, and SC (salicylate) groups also suggested that different bio-stimulants might induce distinct ecological impacts influencing the succession of prokaryotic communities in distinct directions. This work provides new insight into the bacterial degradation of pyrene using the bio-stimulation technique. It suggests that it is equally important to investigate the community structure and functions along with studying their impacts on degradation when devising a bio-stimulation technology.
Afficher plus [+] Moins [-]Aggregation kinetics of fragmental PET nanoplastics in aqueous environment: Complex roles of electrolytes, pH and humic acid Texte intégral
2021
Dong, Shunan | Cai, Wangwei | Xia, Jihong | Sheng, Liting | Wang, Weimu | Liu, Hui
The aggregation kinetics of fragmental polyethylene glycol terephthalate (PET) nanoplastics under various chemistry conditions in aqueous environment were firstly investigated in this work. The aggregation of PET nanoplastics increased with increasing electrolyte concentrations and decreasing solution pH, which became stronger with the presence of divalent cations (e.g. Ca²⁺ and Mg²⁺) than that of monovalent cations (e.g. Na⁺ and K⁺). The effect of cations with the same valence on the aggregation of PET nanoplastics was similar. The measured critical coagulation concentrations (CCC) for PET nanoplastics at pH 6 were 55.0 mM KCl, 54.2 mM NaCl, 2.1 mM CaCl₂ and 2.0 mM MgCl₂, which increased to 110.4 mM NaCl and 5.6 mM CaCl₂ at pH 10. In addition, the aggregation of PET nanoplastics was significantly inhibited with the presence of humic acid (HA), and the CCC values increased to 558.8 mM NaCl and 12.3 mM CaCl₂ (1 mg L⁻¹ HA). Results from this study showed that the fragmental PET nanoplastics had the quite higher CCC values and stability in aqueous environment. In addition, the aggregation behaviors of PET nanoplastics can be successfully predicted by the Derjguin Landau Verwey Overbeek (DLVO) theory.
Afficher plus [+] Moins [-]