Affiner votre recherche
Résultats 1-10 de 149
Residues and Dissipation Kinetics of Two Imidacloprid Nanoformulations on Bean (Phaseolus vulgaris L.) under Field Conditions
2019
Memarizadeh, N. | Ghadamyari, M. | Talebi, K. | Torabi, E. | Adeli, M. | Jalalipour, R.
The current study investigates the dissipation kinetics of two imidacloprid (IMI) nanoformulations (entitled: Nano-IMI and Nano-IMI/TiO2) on common bean (Phaseolus vulgaris) seeds under field conditions and compares them with 35% Suspension Concentrate (SC) commercial formulation. To do so, it sprays P. vulgaris plants at 30 and 60 g/ha within green bean stage, sampling them during the 14-day period after the treatment. Following extraction and quantification of IMI residues, dissipation data have been fitted to simple-first order kinetic model (SFOK) and to first-order double-exponential decay (FODED) models, with 50% and 90% dissipation times (DT50 and DT90, respectively) assessed along the pre-harvest interval (PHI). With the exception of Nano-IMI at 60 g/ha, other decline curves are best fitted to the FODED model. In general, dissipation is faster for Nano-IMI (at 30 g/ha: DT50 = 1.09 days, DT90 = 4.30 days, PHI = 1.23 days; at 60 g/ha: DT50 = 1.29 days, DT90 = 4.29 days, PHI = 2.95 days) and Nano-IMI/TiO2 (at 30 g/ha: DT50 = 1.15 days, DT90 = 4.40 days, PHI = 1.08 days; at 60 g/ha: DT50 = 0.86 days, DT90 = 4.92 days, PHI = 3.02 days), compared to 35% SC (at 30 g/ha: DT50 = 1.58, DT90 = 6.45, PHI = 1.93; at 60 g/ha: DT50 = 1.58 days, DT90 = 14.50 days, PHI = 5.37 days). These results suggest the suitability of Nano-IMI and Nano-IMI/TiO2 application at both rates in terms of their residues on P. vulgaris seeds.
Afficher plus [+] Moins [-]Earthworm cast production as a new behavioural biomarker for toxicity testing.
2010
Capowiez , Yvan (INRA , Avignon (France). UR 1115 Unité de recherche Plantes et Systèmes de Culture Horticoles) | Dittbrenner , Nils (INRA , Avignon (France). UR 1115 Unité de recherche Plantes et Systèmes de Culture Horticoles) | Rault-Léonardon , Magali (INRA , Avignon (France). UMR 0406 Abeilles et Environnement) | Triebskorn , Rita (Eberhard Karls University of Tübingen(Allemagne).) | Hedde , Mickaël (INRA , Versailles (France). UR 0251 Physico-chimie et Ecotoxicologie des Sols d'agrosystèmes contaminés) | Mazzia , Christophe (INRA , Avignon (France). UMR 0406 Abeilles et Environnement)
There is currently a lack of ecotoxicity tests adapted to earthworm species of higher ecological relevance and whose endpoints could be directly related to their ecological role in the soil. We propose a new and relatively simple ecotoxicity test based on the estimation of cast production (CP) by Lumbricus terrestris under laboratory conditions. CP was found to be linearly correlated to earthworm biomass and to be greatly influenced by soil water content. Azinphos-methyl had no effect on CP at all the concentrations tested. Significant decreases were observed at the normal application rate for other pesticides with (imidacloprid, carbaryl, methomyl) or without (ethyl-parathion and chlorpyrifos-ethyl) a clear concentration–effect response. For the highest concentration tested, reduction in CP varied between 35 and 67%. CP is straightforward and rapidly measured and ecologically meaningful. We thus believe it to be of great use as an endpoint in ecotoxicity testing.
Afficher plus [+] Moins [-]A miniaturized electrothermal array for rapid analysis of temperature preference behaviors in ecology and ecotoxicology
2022
Henry, Jason | Bai, Yutao | Kreuder, Florian | Saaristo, Minna | Kaslin, Jan | Wlodkowic, Donald
Due to technical limitations, there have been minimal studies performed on thermal preferences and thermotactic behaviors of aquatic ectotherm species commonly used in ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built and miniaturized electrothermal array for rapid thermal preference behavioral tests. We applied the novel platform to define thermal preferences in multiple invertebrate and vertebrate species. Specifically, Dugesia notogaea (freshwater planarians), Chironomus tepperi (nonbiting midge larvae), Ostracoda (seed shrimp), Artemia franciscana (brine shrimp), Daphnia carinata (water flea), Austrochiltonia subtenuis (freshwater amphipod), Physa acuta (freshwater snail), Potamopyrgus antipodarum (New Zealand mud snail) and larval stage of Danio rerio (zebrafish) were tested. The Australian freshwater water fleas, amphipods, snail Physa acuta as well as zebrafish exhibited the most consistent preference to cool zones and clear avoidance of zones >27 °C out of nine species tested. Our results indicate the larval stage of zebrafish as the most responsive species highly suitable for prospective development of multidimensional behavioral test batteries. We also showcase preliminary data that environmentally relevant concentrations of pharmaceutical pollutants such as non-steroidal anti-inflammatory drug (NSAID) ibuprofen (9800 ng/L) and insecticide imidacloprid (4600 ng/L) but not anti-depressant venlafaxine (2200 ng/L) and (iv) anticonvulsant medications gabapentin (400 ng/L) can perturb thermal preference behavior of larval zebrafish. Collectively our results demonstrate the utility of simple and inexpensive thermoelectric technology in rapid exploration of thermal preference in diverse species of aquatic animals. We postulate that more broadly such technologies can also have added value in ecotoxicity testing of emerging contaminants.
Afficher plus [+] Moins [-]Synergistic effect of ZnO NPs and imidacloprid on liver injury in male ICR mice: Increase the bioavailability of IMI by targeting the gut microbiota
2022
Yan, Sen | Tian, Sinuo | Meng, Zhiyuan | Sun, Wei | Xu, Ning | Jia, Ming | Huang, Shiran | Wang, Yu | Zhou, Zhiqiang | Diao, Jinling | Zhu, Wentao
Although many toxicological studies on pesticides and nanoparticles have been conducted, it is not clear whether nanoparticles will increase the toxicity of pesticides. In this study, we chose imidacloprid (IMI) as a representative pesticide, and explored the influence of ZnO NPs on the toxic effect of IMI. In addition, we studied the bioaccumulation of IMI in mice. Using biochemical index analysis, liver histopathological analysis, non-targeted metabolomics, and LC/MS analysis, we found that ZnO NPs increased the toxicity of IMI, which may be related to the increase in IMI bioaccumulation in mice. In addition, we used intestinal histopathological analysis, RT-qPCR, and 16sRNA sequencing to find that the disturbance of the gut microbiota and the impaired intestinal barrier caused by ZnO NPs may be the reason for the increase in IMI bioaccumulation. In summary, our results indicate that ZnO NPs disrupted the intestinal barrier and enhanced the bioaccumulation of IMI, and therefore increased the toxicity of IMI in mice. Our research has deepened the toxicological insights between nanomaterials and pesticides.
Afficher plus [+] Moins [-]Chemicals with increasingly complex modes of action result in greater variation in sensitivity between earthworm species
2021
Robinson, Alex | Lahive, Elma | Short, Stephen | Carter, Heather | Sleep, Darren | Pereira, Gloria | Kille, Peter | Spurgeon, David
The scale of variation in species sensitivity to toxicants has been theoretically linked to mode of action. Specifically, it has been proposed there will be greater variations for chemicals with a putative specific biological target than for toxicants with a non-specific narcotic mechanism. Here we test the hypothesis that mode of action is related to variation in sensitivity in a specifically designed experiment for species from a single ecologically important terrestrial taxa, namely earthworms. Earthworm toxicity tests were conducted with five species for four chemicals, providing a series of increasingly complex modes of action: a putative narcotic polycyclic aromatic hydrocarbon (fluoranthene), and three insecticides (chlorpyrifos, cypermethrin, imidacloprid) with known neuronal receptor targets. Across all the chemicals, the standard epigeic test species Eisenia fetida and Lumbricus rubellus, were generally among the two least sensitive, while the endogenic Aporrectodea caliginosa and Megascolecidae Amynthas gracilis were generally more sensitive (never being among the two least sensitive species). This indicates a potential for bias in the earthworm ecotoxicology literature, which is dominated by studies in epigeic Lumbricidae, but contains few endogeic or Megascolecidae data. Results confirmed the lowest range of variation in sensitivities for effects on reproduction was for fluoranthene (2.5 fold). All insecticides showed greater variation for species sensitivity (cypermethrin: 7.5 fold, chlorpyrifos: 10.3 fold, imidacloprid: 31.5 fold) consistent with the specific mechanisms of the pesticides. Difference in toxicodynamics, based on mode of action specificity and receptor complexity was reflected in the magnitude of sensitivity variation. However, measurements of tissue concentrations also indicated the potential importance of toxicokinetics in explaining species sensitivity variations for chlorpyrifos and cypermethrin.
Afficher plus [+] Moins [-]Quercetin antagonizes imidacloprid-induced mitochondrial apoptosis through PTEN/PI3K/AKT in grass carp hepatocytes
2021
Miao, Zhiruo | Miao, Zhiying | Wang, Shengchen | Shi, Xu | Xu, Shiwen
Imidacloprid (IMI) is widely used in agriculture, and is toxic to non-target aquatic species. Quercetin (Que) is a flavonoid abundant in fruits and vegetables that exhibits anti-oxidant activity. In the present study, we treated grass carp hepatocytes (L8824) with 0.1 μM Que and/or 1 mM IMI for 24 h to explore the effect of Que on IMI-induced mitochondrial apoptosis. We found that IMI exposure enhanced reactive oxygen species (ROS) generation, inhibiting the activities of SOD, CAT and T-AOC, exacerbating the accumulation of MDA, aggravating the expression of mitochondrial apoptosis pathway (Cyt-C, BAX, Caspase9 and Caspase3) related genes and decreased the expression of anti-apoptosis gene B-cell lymphoma-2 (Bcl-2). In addition, Que and IMI co-treatment significantly restored the activity of anti-oxidant enzymes, downregulated ROS level and apoptosis rate, thereby alleviating the depletion of mitochondrial membrane potential (ΔΨm) and the expression of cytochrome c (Cyt-C), Bcl-2-associated X (BAX), and cysteinyl aspartate specific proteinases (Caspase9 and 3), increasing the Bcl-2 level. Furthermore, we elucidated that Que could inhibit the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), thus activating phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway to attenuate IMI-induced apoptosis. Molecular docking provides assertive evidence for the interaction between Que ligand and PTEN receptor. Consequently, these results indicate that Que effectively antagonizes IMI-induced mitochondrial apoptosis in grass carp hepatocytes via regulating the PTEN/PI3K/AKT pathway.
Afficher plus [+] Moins [-]Emerging organic contaminants in groundwater under a rapidly developing city (Patna) in northern India dominated by high concentrations of lifestyle chemicals
2021
Richards, Laura A. | Kumari, Rupa | White, Debbie | Parashar, Neha | Kumar, Arun | Ghosh, Ashok | Sumant Kumar, | Chakravorty, Biswajit | Lu, Chuanhe | Civil, Wayne | Lapworth, Dan J. | Krause, Stephan | Polya, David A. | Gooddy, Daren C.
Aquatic pollution from emerging organic contaminants (EOCs) is of key environmental importance in India and globally, particularly due to concerns of antimicrobial resistance, ecotoxicity and drinking water supply vulnerability. Here, using a broad screening approach, we characterize the composition and distribution of EOCs in groundwater in the Gangetic Plain around Patna (Bihar), as an exemplar of a rapidly developing urban area in northern India. A total of 73 EOCs were detected in 51 samples, typically at ng.L⁻¹ to low μg.L⁻¹ concentrations, relating to medical and veterinary, agrochemical, industrial and lifestyle usage. Concentrations were often dominated by the lifestyle chemical and artificial sweetener sucralose. Seventeen identified EOCs are flagged as priority compounds by the European Commission, World Health Organisation and/or World Organisation for Animal Health: namely, herbicides diuron and atrazine; insecticides imidacloprid, thiamethoxam, clothianidin and acetamiprid; the surfactant perfluorooctane sulfonate (and related perfluorobutane sulfonate, perfluorohexane sulfonate, perfluorooctanoic acid and perfluoropentane sulfonate); and medical/veterinary compounds sulfamethoxazole, sulfanilamide, dapson, sulfathiazole, sulfamethazine and diclofenac. The spatial distribution of EOCs varies widely, with concentrations declining with depth, consistent with a strong dominant vertical flow control. Groundwater EOC concentrations in Patna were found to peak within ∼10 km distance from the River Ganges, indicating mainly urban inputs with some local pollution hotspots. A heterogeneous relationship between EOCs and population density likely reflects confounding factors including varying input types and controls (e.g. spatial, temporal), wastewater treatment infrastructure and groundwater abstraction. Strong seasonal agreement in EOC concentrations was observed. Co-existence of limited transformation products with associated parent compounds indicate active microbial degradation processes. This study characterizes key controls on the distribution of groundwater EOCs across the urban to rural transition near Patna, as a rapidly developing Indian city, and contributes to the wider understanding of the vulnerability of shallow groundwater to surface-derived contamination in similar environments.
Afficher plus [+] Moins [-]Neonicotinoids stimulate H2-limited methane emission in Periplaneta americana through the regulation of gut bacterium community
2021
Bao, Haibo | Gao, Haoli | Zhang, Jianhua | Lü, Haiyan | Yu, Na | Shao, Xusheng | Zhang, Yixi | Jin, Wei | Li, Shuqing | Xu, Xiaoyong | Tian, Jiahua | Xu, Zhiping | Li, Zhong | Liu, Zewen
Methane emitted by insects is considered to be an important source of atmospheric methane. Here we report the stimulation of methane emission in the cockroach Periplaneta americana and termite Coptotermes chaohuensis, insects with abundant methanogens, by neonicotinoids, insecticides widely used to control insect pests. Cycloxaprid (CYC) and imidacloprid (IMI) caused foregut expansion in P. americana, and increased the methane emission. Antibiotics mostly eliminated the effects. In P. americana guts, hydrogen levels increased and pH values decreased, which could be significantly explained by the gut bacterium community change. The proportion of several bacterium genera increased in guts following CYC treatment, and two genera from four could generate hydrogen. Hydrogen is a central intermediate in methanogenesis. All increased methanogens in both foregut and hindgut used hydrogen as electron donor to produce methane. Besides, the up-regulation of mcrA, encoding the enzyme for the final step of methanogenesis suggested the enhanced methane production ability in present methanogens. In the termite, hydrogen levels in gut and methane emission also significantly increased after neonicotinoid treatment, which was similar to the results in P. americana. In summary, neonicotinoids changed bacterium community in P. americana gut to generate more hydrogen, which then stimulated gut methanogens to produce and emit more methane. The finding raised a new concern over neonicotinoid applications, and might be a potential environmental risk associated with atmospheric methane.
Afficher plus [+] Moins [-]Dynamics in imidacloprid sorption related to changes of soil organic matter content and quality along a 20-year cultivation chronosequence of citrus orchards
2021
Zheng, Taihui | Hu, Tong | Zhang, Jie | Tang, Chongjun | Duan, Jian | Song, Yuejun | Zhang, Qin
The on-going and extensive use of neonicotinoids occur in orchards. However, it is still unknown whether and how orchard management affects soil properties, especially the contents and structure of soil organic matter during orchard development, and their further influences on neonicotinoid persistence. Here, surface soil samples were collected from the citrus orchards with different cultivation ages (1, 10, 14, and 20 years), and their physicochemical properties were determined. Changes in the chemical structure of soil organic matter (SOM) were furtherly examined using solid-state CP/TOSS ¹³C NMR. Then, the sorption isotherms of imidacloprid in these soils were investigated. The sorption coefficient (Kd) of imidacloprid at Cₑ of 0.05 mg/L in the orchard soils increased by 19.4–23.3%, along a 20-year chronosequence of cultivation, which should be mainly ascribed to the increase of SOM. However, the organic carbon-normalized sorption coefficient (Kₒc, sorption per unit mass of OM) of imidacloprid declined with increasing cultivation ages. Moreover, the polar and aliphatic domains of SOM had a significantly positive relation to the Kₒc of imidacloprid, suggesting its key role in governing imidacloprid sorption. The results highlighted that reasonable management measures could be adopted to control the occurrence and fate of neonicotinoids in soils, mainly by affecting the content and quality of SOM.
Afficher plus [+] Moins [-]Cascading effects of insecticides and road salt on wetland communities
2021
Lewis, Jacquelyn L. | Agostini, Gabriela | Jones, Devin K. | Relyea, Rick A.
Novel stressors introduced by human activities increasingly threaten freshwater ecosystems. The annual application of more than 2.3 billion kg of pesticide active ingredient and 22 billion kg of road salt has led to the contamination of temperate waterways. While pesticides and road salt are known to cause direct and indirect effects in aquatic communities, their possible interactive effects remain widely unknown. Using outdoor mesocosms, we created wetland communities consisting of zooplankton, phytoplankton, periphyton, and leopard frog (Rana pipiens) tadpoles. We evaluated the toxic effects of six broad-spectrum insecticides from three families (neonicotinoids: thiamethoxam, imidacloprid; organophosphates: chlorpyrifos, malathion; pyrethroids: cypermethrin, permethrin), as well as the potentially interactive effects of four of these insecticides with three concentrations of road salt (NaCl; 44, 160, 1600 Cl⁻ mg/L). Organophosphate exposure decreased zooplankton abundance, elevated phytoplankton biomass, and reduced tadpole mass whereas exposure to neonicotinoids and pyrethroids decreased zooplankton abundance but had no significant effect on phytoplankton abundance or tadpole mass. While organophosphates decreased zooplankton abundance at all salt concentrations, effects on phytoplankton abundance and tadpole mass were dependent upon salt concentration. In contrast, while pyrethroids had no effects in the absence of salt, they decreased zooplankton and phytoplankton density under increased salt concentrations. Our results highlight the importance of multiple-stressor research under natural conditions. As human activities continue to imperil freshwater systems, it is vital to move beyond single-stressor experiments that exclude potentially interactive effects of chemical contaminants.
Afficher plus [+] Moins [-]