Affiner votre recherche
Résultats 1-10 de 1,331
Spectrophotometer-based student education program on health hazard assessment due to Cr(VI) and Pb contamination in surface and groundwaters of Hyderabad City, India Texte intégral
2015
Das Sharma, Mala | Juyal, Archana | Karuna, Mantha | Das Sharma, Subrata
A student-centric research education program with the active participation of undergraduate students is initiated. The aim is to imbibe ―responsible citizenship behavior‖ in them so that each member becomes conscious and well trained to take up environmental-related issues and challenges for long-term sustainability of the ecosystem. In this work, we report spectrophotometer-based estimation of hexavalent chromium (57-268 gL-1) and lead (34–158 gL-1) concentrations in different surface waters and groundwater samples in and around the city of Hyderabad, India. Our results indicate that the studied surface water bodies and aquifers are contaminated to variable degrees and pose a serious threat to the ecosystem. In view of low geochemical baseline values for chromium and lead, the origin of heavy metal pollution is inferred to be anthropogenic, mainly originating from industrial effluents. The toxicological data are integrated with health data for risk assessment and impending health hazard. Finally, the novelty of this student-centric research program is highlighted.
Afficher plus [+] Moins [-]Impact of copper mines and smelter on groundwater quality (Case Study: Rajasthan State in India) Texte intégral
2015
Hussain, Ikbal | Hussain, Jakir | Arif, Mohammed | Vadiya, Vinod
Rajasthan is one of the main mineral potential state of India. During the last 30 years it has witnessed enormous expansion of mining industries, but mining of most of the minor minerals coupled with changing climate has posed serious problems to the environmental fabric in the state, apart from base metal beneficiation plants. Groundwater is also being polluted day-by-day by effluents generated from mineral wastes and beneficiation processes in the vicinity of mining sites such as Khetri. Pollutant concentrations were measured in groundwater at the vicinity of Khetri copper mining project, Rajasthan to investigate the influence of copper mining on environment. Pollutant concentrations in groundwater were investigated. Copper metal concentration in water samples were found above the maximum desirable limit in two sources: G4 and G5, due to washing away of mineral with water. Mining industry has deteriorated quality of groundwater resources in the state of Rajasthan, and these industries are becoming centers of pollution sources which need timely actions at government level so that natural resources such as groundwater can be protected.
Afficher plus [+] Moins [-]Sulfur dioxide resistance of Indian trees. 2. Experimental evaluation of metabolic profile.
1988
Beg M.U. | Farooq M.
Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia Texte intégral
2021
Aryal, Jeetendra P | Sapkota, Tek Bahadur | Krupnik, Timothy J. | Rahut, Dil B | Jat, Mangi Lal | Stirling, Clare M
Fertilizer, though one of the most essential inputs for increasing agricultural production, is a leading cause of nitrous oxide emissions from agriculture, contributing significantly to global warming. Therefore, understanding factors affecting farmers’ use of fertilizers is crucial to develop strategies to improve its efficient use and to minimize its negative impacts. Using data from 2528 households across the Indo-Gangetic Plains in India, Nepal, and Bangladesh, this study examines the factors affecting farmers’ use of organic and inorganic fertilizers for the two most important cereal crops – rice and wheat. Together, these crops provide the bulk of calories consumed in the region. As nitrogen (N) fertilizer is the major source of global warming and other environmental effects, we also examine the factors contributing to its overuse. We applied multiple regression models to understand the factors influencing the use of inorganic fertilizer, Heckman models to understand the likelihood and intensity of organic fertilizer (manure) use, and a probit model to examine the over-use of N fertilizer. Our results indicate that various socio-economic and geographical factors influence the use of organic and inorganic fertilizers in rice and wheat. Across the study sites, N fertilizer over-use is the highest in Haryana (India) and the lowest in Nepal. Across all locations, farmers reported a decline in manure application, concomitant with a lack of awareness of the principles of appropriate fertilizer management that can limit environmental externalities. Educational programs highlighting measures to improving nutrient-use-efficiency and reducing the negative externalities of N fertilizer over-use are proposed to address these problems.
Afficher plus [+] Moins [-]Fluoride in weathered rock aquifers of southern India: managed aquifer recharge for mitigation Texte intégral
2016
Brindha, Karthikeyan | Jagadeshan, G. | Kalpana, L. | Elango, L.
Climatic condition, geology, and geochemical processes in an area play a major role on groundwater quality. Impact of these on the fluoride content of groundwater was studied in three regions-part of Nalgonda district in Telangana, Pambar River basin, and Vaniyar River basin in Tamil Nadu, southern India, which experience semi-arid climate and are predominantly made of Precambrian rocks. High concentration of fluoride in groundwater above 4 mg/l was recorded. Human exposure dose for fluoride through groundwater was higher in Nalgonda than the other areas. With evaporation and rainfall being one of the major contributors for high fluoride apart from the weathering of fluoride rich minerals from rocks, the effect of increase in groundwater level on fluoride concentration was studied. This study reveals that groundwater in shallow environment of all three regions shows dilution effect due to rainfall recharge. Suitable managed aquifer recharge (MAR) methods can be adopted to dilute the fluoride rich groundwater in such regions which is explained with two case studies. However, in deep groundwater, increase in fluoride concentration with increase in groundwater level due to leaching of fluoride rich salts from the unsaturated zone was observed. Occurrence of fluoride above 1.5 mg/l was more in areas with deeper groundwater environment. Hence, practicing MAR in these regions will increase the fluoride content in groundwater and so physica or chemical treatment has to be adopted. This study brought out the fact that MAR cannot be practiced in all regions for dilution of ions in groundwater and that it is essential to analyze the fluctuation in groundwater level and the fluoride content before suggesting it as a suitable solution. Also, this study emphasizes that long-term monitoring of these factors is an important criterion for choosing the recharge areas.
Afficher plus [+] Moins [-]Anthropogenic risk assessment of riverine habitat using geospatial modelling tools for conservation and restoration planning: A case study from a tropical river Pranhita, India Texte intégral
2023
Kantharajan, Ganesan | Govindakrishnan, Panamanna Mahadevan | Chandran, Rejani | Singh, Rajeev Kumar | Kumar, Kundan | Anand, Arur | Krishnan, Pandian | Mohindra, Vindhya | Shukla, Satya Prakash | Lal, Kuldeep Kumar
Quantitative assessment of sediment delivery and retention in four watersheds in the Godavari River Basin, India, using InVEST model — an aquatic ecosystem services perspective Texte intégral
2022
Kantharajan, Ganesan | Govindakrishnan, Panamanna Mahadevan | Singh, Rajeev K. | Estrada-Carmona, Natalia | Jones, Sarah K. | Singh, Achal | Mohindra, Vindhya | Kumar, Nallur Kothanda Raman Krishna | Rana, Jai C. | Jena, Joy Krushna | Lal, Kuldeep Kumar
Characterization of anthropogenic marine macro-debris affecting coral habitat in the highly urbanized seascape of Mumbai megacity Texte intégral
2022
De, Kalyan | Sautya, Sabyasachi | Gaikwad, Santosh | Mitra, Aditi | Nanajkar, Mandar
Marine debris has become a major form of pollution and a serious ecosystem health concern. The present study evaluates the accumulation, origin, and fate of debris in intertidal coral habitats of Mumbai-one of the world's highly populated coastal cities on the west coast of India. Predominantly, seven hermatypic coral species belonging to seven genera and five families were identified and mainly represented by Pseudosidastrea, Porites, and Bernardpora. In terms of number, the mean density of marine debris was 1.60 ± 0.13 SE items/m², which is higher than the global average. The mean density of plastic debris was 1.46 ± 0.14 SE items/m². Approximately 9% of total coral colonies were in physical contact with debris, and 22% of these colonies showed visible signs of partial bleaching. Single use plastic bags and wrappers were dominant plastic debris. The study area was characterized as ‘very poor cleanliness’ according to the Beach Quality Indexes, which include the Clean Coast Index, General Index, and Hazardous Items Index. The numerical model indicates the influence of river discharge and probable areas of plastic accumulation with high tidal currents in this region, maneuvering the spatial advection of litter in the nearshore areas. Combined analysis of ground-truthing and model simulation implies that the possible contributing sources of litter were representatives of land-based and sea-originated. The overall results point to increasing anthropogenic stressors threatening coastal coral communities, including marine debris pollution. It is advocated to adopt an integrated coastal zone management approach supported by coordinated policy frameworks could guide the mitigation of the debris footprint in coastal environments.
Afficher plus [+] Moins [-]Air monitoring of tire-derived chemicals in global megacities using passive samplers Texte intégral
2022
Johannessen, Cassandra | Saini, Amandeep | Zhang, Xianming | Harner, Tom
Pollution from vehicle tires has received world-wide research attention due to its ubiquity and toxicity. In this study, we measured various tire-derived contaminants semi-quantitatively in archived extracts of passive air samplers deployed in 18 major cities that comprise the Global Atmospheric Passive Sampling (GAPS) Network (GAPS-Megacities). Analysis was done on archived samples, which represent one-time weighted passive air samples from each of the 18 monitoring sites. The target analytes included cyclic amines, benzotriazoles, benzothiazoles, and p-phenylenediamine (PPD) derivatives. Of the analyzed tire-derived contaminants, diphenylguanidine was the most frequently detected analyte across the globe, with estimated concentrations ranging from 45.0 pg/m³ in Beijing, China to 199 pg/m³ in Kolkata, India. The estimated concentrations of 6PPD-quinone and total benzothiazoles (including benzothiazole, 2-methylthio-benzothiazole, 2-methyl-benzothiazole, 2-hydroxy-benzothiazole) peaked in the Latin American and the Caribbean region at 1 pg/m³ and 100 pg/m³, respectively. In addition, other known tire-derived compounds, such as hexa(methoxymethyl)melamine, phenylguanidine, and various transformation products of 6PPD, were also monitored and characterized semi-quantitatively or qualitatively. This study presents some of the earliest data on airborne concentrations of chemicals associated with tire-wear and shows that passive sampling is a viable techniquefor monitoring airborne tire-wear contamination. Due to the presence of many tire-derived contaminants in urban air across the globe as highlighted by this study, there is a need to determine the associated exposure and toxicity of these chemicals to humans.
Afficher plus [+] Moins [-]Will open waste burning become India's largest air pollution source? Texte intégral
2022
Sharma, Gaurav | Annadate, Saurabh | Sinha, Baerbel
India struggles with frequent exceedances of the ambient air quality standard for particulate matter and benzene. In the past two decades, India has made considerable progress in tackling indoor air pollution, by phasing out kerosene lamps, and pushing biofuel using households towards Liquefied Petroleum Gas (LPG) usage. In this study, we use updated emission inventories and trends in residential fuel consumption, to explore changes in the contribution of different sectors towards India's largest air pollution problem. We find that residential fuel usage is still the largest air pollution source, and that the <10% households using cow dung as cooking fuel contribute ∼50% of the residential PM₂.₅ emissions. However, if current trends persist, residential biofuel usage in India is likely to be phased out by 2035. India's renewable energy policies are likely to reduce emissions in the heat and electricity sector, and manufacturing industries, in the mid-term. PM₂.₅ emissions from open waste burning, on the other hand, hardly changed in the decade from 2010 to 2020. We conclude that without strong policies to promote recycling and upcycling of non-biodegradable waste, and the conversion of biodegradable waste to biogas, open waste burning is likely to become India's largest source of air pollution by 2035. While our study is limited to India, our findings are of relevance for other countries in the global South suffering from similar waste management challenges.
Afficher plus [+] Moins [-]