Affiner votre recherche
Résultats 1-10 de 67
Atmospheric mercury pollution caused by fluorescent lamp manufacturing and the associated human health risk in a large industrial and commercial city
2021
Luo, Qing | Ren, Yuxuan | Sun, Zehang | Li, Yu | Li, Bing | Yang, Sen | Zhang, Wanpeng | Hu, Yuanan | Cheng, Hefa
Although already eliminated in most industrial processes, mercury, as an essential ingredient in all energy-efficient lighting technologies, is still used in fluorescent lamp manufacturing. This study was conducted to investigate the atmospheric pollution caused by fluorescent lamp production and assess the associated public health risk in a large industrial and commercial city of south China, Zhongshan, which is a major production hub of lighting products. Concentrations of total gaseous mercury (TGM) in the atmosphere were measured over a total of 342 sites in the industrial, commercial, and residential areas. The average levels of TGM in the industrial, commercial, and residential areas prior to the landing of a typhoon were 12 ± 11, 3.6 ± 2.1, and 2.7 ± 1.3 ng⋅m⁻³, respectively. TGM concentrations in the industrial areas exhibited significant diurnal variation, with levels in the working hours being much higher than those in the non-working hours, which indicates that the high atmospheric mercury concentrations were contributed by local emissions, instead of regional transport. Most fluorescent lamp manufacturing activities in the city were shut down during a typhoon event, which resulted in a significant reduction in the average TGM level (down to 1.6 ± 1.8 ng⋅m⁻³) and rendered the difference in the average TGM levels in the industrial areas no longer significant between the working and non-working hours. Elevated TGM levels (up to 49 ng⋅m⁻³) were found near clusters of small-scale fluorescent lamp workshops in both industrial and commercial areas, which is indicative of significant emissions of mercury vapor resulting from obsolete equipment and production technologies. No significant non-carcinogenic risk was found for the general residents in the sampling area over the study period, while the risk for the workers in the fluorescent lamp manufacturing facilities and workshops could be higher. These findings indicate that fluorescent lamp manufacturing in the developing countries is a major source of atmospheric mercury.
Afficher plus [+] Moins [-]Arsenic speciation in rice bran: Agronomic practices, postharvest fermentation, and human health risk assessment across the lifespan
2021
Weber, Annika M. | Baxter, Bridget A. | McClung, Anna | Lamb, Molly M. | Becker-Dreps, Sylvia | Vilchez, Samuel | Koita, Ousmane | Wieringa, Frank | Ryan, Elizabeth P.
Arsenic (As) exposure is a global public health concern affecting millions worldwide and stems from drinking water and foods containing As. Here, we assessed how agronomic practices and postharvest fermentation techniques influence As concentrations in rice bran, and calculated health risks from consumption. A global suite of 53 rice brans were tested for total As and speciation. Targeted quantification of inorganic As (iAs) concentrations in rice bran were used to calculate Target Hazard Quotient (THQ) and Lifetime Cancer Risk (LCR) across the lifespan. Mean iAs was highest in Thailand rice bran samples (0.619 mg kg⁻¹) and lowest in Guatemala (0.017 mg kg⁻¹) rice bran samples. When comparing monosodium-methanearsonate (MSMA) treated and the Native-soil counterpart under the irrigation technique Alternate Wetting and Drying (AWD) management, the MSMA treatment had significantly higher total As (p = 0.022), and iAs (p = 0.016). No significant differences in As concentrations were found between conventional and organic production, nor between fermented and non-fermented rice bran. Health risk assessment calculations for the highest iAs-rice bran dosage scenario for adults, children and infants exceeded THQ and LCR thresholds, and LCR was above threshold for median iAs-rice bran. This environmental exposure investigation into rice bran provides novel information with food safety guidance for an emerging global ingredient.
Afficher plus [+] Moins [-]Triclocarban exposure affects mouse oocyte in vitro maturation through inducing mitochondrial dysfunction and oxidative stress
2020
Ding, Zhi-Ming | ʻAdīl, Jamīl Aḥmad | Meng, Fei | Chen, Fan | Wang, Yong-Shang | Zhao, Xin-Zhe | Zhang, Shou-Xin | Miao, Yi-Liang | Xiong, Jia-Jun | Huo, Li-Jun
Triclocarban (TCC), a broad-spectrum lipophilic antibacterial agent, is the main ingredient of personal and health care products. Nonetheless, its ubiquitous presence in the environment has been established to negatively affect the reproduction in humans and animals. In this work, we studied the possible toxic effects of TCC on mouse oocytes maturation in vitro. Our findings revealed that TCC-treated immature mouse oocytes had a significantly reduced rate of polar body extrusion (PBE) compared to that of control. Further study demonstrated that the cell cycle progression and cytoskeletal dynamics were disrupted after TCC exposure, which resulted in the continuous activation of spindle assembly checkpoint (SAC). Moreover, TCC-treated oocytes had mitochondrial damage, reduced ATP content, and decreased mitochondrial membrane potential (MMP). Furthermore, TCC exposure induced oxidative stress and subsequently triggered early apoptosis in mouse oocytes. Besides, the levels of histone methylation were also affected, as indicated by increased H3K27me2 and H3K27me3 levels. In summary, our results revealed that TCC exposure disrupted mouse oocytes maturation through affecting cell cycle progression, cytoskeletal dynamics, oxidative stress, early apoptosis, mitochondria function, and histone modifications in vitro.
Afficher plus [+] Moins [-]Effect of β-adrenergic receptor agents on cardiac structure and function and whole-body gene expression in Daphnia magna
2018
Jeong, Tae-Yong | Asselman, Jana | De Schamphelaere, Karel A.C. | Van Nieuwerburgh, Filip | Deforce, Dieter | Kim, Sang-don
Propranolol (PRO), a human β-AR (β-adrenergic receptor) antagonist, is considered to result in specific effects in a non-target species, D. magna, based on our previous studies. The present study investigated the effects of β-AR agents, including an antagonist and agonist using pharmacologically relevant endpoints as well as a more holistic gene expression approach to reveal the impacts and potential mode of actions (MOAs) in the model non-target species. Results show that the responses in cardiac endpoints and gene expression in D. magna are partially similar but distinguishable from the observations in different organisms. No effect was observed on heart size growth in PRO and isoprenaline (ISO) exposure. The contraction capacity of the heart was decreased in ISO exposure, and the heart rate was decreased in PRO exposure. Time-series exposures showed different magnitudes of effect on heart rate and gene expression dependent on the type of chemical exposure. Significant enrichment of gene families involved in protein metabolism and biotransformation was observed within the differentially expressed genes, and we also observed differential expression in juvenile hormone-inducible proteins in ISO and PRO exposure, which is suspected of having endocrine disruption potential. Taken together, deviation between the effects of PRO and ISO in D. magna and other organisms suggests dissimilarity in MOAs or attributes of target bio-molecules between species. Additionally, PRO and ISO may act as endocrine disruptors based on the gene expression observation. Results in the present study confirm that it is challenging to predict ecological impact of active pharmaceutical ingredients (APIs) based on the available data acquired through human-focused studies. Furthermore, the present study provided unique data and a case study on the impact of APIs in a non-target organism.
Afficher plus [+] Moins [-]Antimicrobial activity of pharmaceutical cocktails in sewage treatment plant effluent – An experimental and predictive approach to mixture risk assessment
2017
Menz, Jakob | Baginska, Ewelina | Arrhenius, Åsa | Haiß, Annette | Backhaus, Thomas | Kümmerer, Klaus
Municipal wastewater contains multi-component mixtures of active pharmaceutical ingredients (APIs). This could shape microbial communities in sewage treatment plants (STPs) and the effluent-receiving ecosystems. In this paper we assess the risk of antimicrobial effects in STPs and the aquatic environment for a mixture of 18 APIs that was previously detected in the effluent of a European municipal STP. Effects on microbial consortia (collected from a separate STP) were determined using respirometry, enumeration of culturable microorganisms and community-level physiological profiling. The mixture toxicity against selected bacteria was assessed using assays with Pseudomonas putida and Vibrio fischeri. Additional data on the toxicity to environmental bacteria were compiled from literature in order to assess the individual and expected joint bacterial toxicity of the pharmaceuticals in the mixture. The reported effluent concentration of the mixture was 15.4 nmol/l and the lowest experimentally obtained effect concentrations (EC10) were 242 nmol/l for microbial consortia in STPs, 225 nmol/l for P. putida and 73 nmol/l for V. fischeri. The lowest published effect concentrations (EC50) of the individual antibiotics in the mixture range between 15 and 150 nmol/l, whereas 0.9–190 μmol/l was the range of bacterial EC50 values found for the non-antibiotic mixture components. Pharmaceutical cocktails could shape microbial communities at concentrations relevant to STPs and the effluent receiving aquatic environment. The risk of antimicrobial mixture effects was completely dominated by the presence of antibiotics, whereas other pharmaceutical classes contributed only negligibly to the mixture toxicity. The joint bacterial toxicity can be accurately predicted from the individual toxicity of the mixture components, provided that standardized data on representative bacterial strains becomes available for all relevant compounds. These findings argue for a more sophisticated bacterial toxicity assessment of environmentally relevant pharmaceuticals, especially for those with a mode of action that is known to specifically affect prokaryotic microorganisms.
Afficher plus [+] Moins [-]Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor
2017
Kalčíková, Gabriela | Gotvajn, Andreja Žgajnar | Kladnik, Aleš | Jemec, Anita
Microplastics (MP), small plastic particles below 5 mm, have become one of the central concerns of environmental risk assessment. Microplastics are continuously being released into the aquatic environment either directly through consumer products or indirectly through fragmentation of larger plastic materials. The aim of our study was to investigate the effect of polyethylene microbeads from cosmetic products on duckweed (Lemna minor), a freshwater floating plant. The effects of microbeads from two exfoliating products on the specific leaf growth rate, the chlorophyll a and b content in the leaves, root number, root length and root cell viability were assessed. At the same time, water leachates from microbeads were also prepared to exclude the contribution of cosmetic ingredients on the measured impacts. Specific leaf growth rate and content of photosynthetic pigments in duckweed leaves were not affected by polyethylene microbeads, but these microbeads significantly affected the root growth by mechanical blocking. Sharp particles also reduced the viability of root cells, while the impact of microbeads with a smooth surface was neglected. It was concluded that microbeads from cosmetic products can also have negative impacts on floating plants in freshwater ecosystems.
Afficher plus [+] Moins [-]Promotion of the biodegradation of phenanthrene adsorbed on microplastics by the functional bacterial consortium QY1 in the presence of humic acid: Bioavailability and toxicity evaluation
2022
Zhu, Minghan | Yin, Hua | Yuan, Yibo | Qi, Xin | Liu, Hang | Wei, Xipeng | Luo, Haoyu | Dang, Zhi
The adsorption of hydrophobic organic compounds (HOCs) by microplastics (MPs) has attracted great attention in recent years. However, the ultimate environmental fate of the HOCs sorbed on MPs (HOCs-MPs) is poorly understood. In this work, we investigated the potential influence of the biotransformation process on the environmental fate of phenanthrene (PHE, a model HOC) sorbed on MPs (PHE-MPs) under the existence of humic acid (HA, the main ingredient of dissolved organic matter (DOM)) in the aquatic environment. The results indicated that the adsorption behavior of PHE on MPs decreased its bioavailability and thus inhibited its biotransformation efficiency. However, HA significantly promoted the biodegradation rate and percentage of PHE-MPs. This was probably because HA improved the desorption of PHE from MPs, which promoted the acquisition of PHE by bacteria from the aqueous phase. Further, HA dramatically increased the bacterial community diversity and richness and altered the community composition. The richness of some PHE-degrading bacteria, such as Methylobacillus and Sphingomonas, significantly increased, which may also be an important factor for promoting PHE biodegradation. Molecular ecological network analysis implied that HA enhanced the modularity and complexity of bacterial interaction networks, which was beneficial to maintaining the functional stability of the consortium QY1. Besides, HA decreased the cytotoxicity of functional microbes induced by HOCs-MPs. This work broadens our knowledge of the environmental fate of HOCs-MPs and interactions of MPs, HOCs, DOMs and functional microbial consortiums in aqueous environments.
Afficher plus [+] Moins [-]Bioassay-based ecotoxicological investigation on marine and freshwater impact of cigarette butt littering
2021
Oliva, M. | De Marchi, L. | Cuccaro, A. | Pretti, C.
Despite representing an extremely relevant portion (20–40%) of worldwide coastal litter, cigarette butts are still an underestimate environmental issue of limited scientific interest. Public authorities of different countries promote active removal of cigarette butts, but the issue remains problematic in terms of aesthetic, environmental and health-related impacts. There are few studies on the environmental side-effects of smoked cigarette butt litter despite being a worldwide issue. In this work, two ecotoxicological bioassay batteries were adopted to evaluate the environmental consequences of cigarette butt water-soluble ingredient release in both marine water and freshwater. Marine assays were generally more affected compared to freshwater. Interesting outcomes were observed with crustacean tests, showing a lower effect of smoked cigarette butt leachate when tested at maximum concentration. This finding were supported by heartbeat measures of Daphnia magna, which were accelerated at 100% of smoked cigarette butt leachate.
Afficher plus [+] Moins [-]Differential impacts of copper oxide nanoparticles and Copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa)
2019
Wang, Xiaoxuan | Sun, Wenjie | Ma, Xingmao
Arsenic (As) in rice grains is a serious food safety concern. Some coexisting engineered nanoparticles (ENPs) were shown to alter the accumulation and speciation of As in rice grains. However, investigation on the effects of copper oxide nanoparticles (CuO NPs), a popular ingredient in pesticides, on the uptake and accumulation of As is rare. We explored the potentially different impact of CuO NPs and corresponding Cu(II) ions on the accumulation of two As species in rice seedlings in a hydroponic system. Rice seedlings were treated with a combinations of 1 mg/L of arsenite (As(III)) or arsenate (As(V)) and 100 mg/L of CuO NPs or Cu(II) for 6 days. Both forms of Cu significantly reduced the accumulation of total As in rice tissues, with Cu(II) exhibiting significantly greater effect than CuO NPs. As speciation in rice roots was markedly affected by both forms of Cu, and the impacts were Cu-form dependent. For example, the co-existence of As(V) with CuO NPs led to a 45% decrease of As(V) in rice roots, while the co-existence of As(V) with Cu(II) caused a 47% increase in As(V) in rice roots. As speciation in rice shoots was less affected by co-present Cu than in rice roots. Co-occurring As(III) or As(V) lowered Cu concentration in rice roots by 40% and 50% in treatments with CuO NPs, but did not affect Cu content in rice roots co-exposed to Cu(II). The study confirmed the reciprocal effect of co-occurring CuO NPs or Cu(II) and As in rice paddies and highlighted the unique “nano-effect” of CuO NPs. The results alsos showed that the initial oxidation state of As plays an important role in the interactions between As and Cu. The results shed light on the current debate on the safe applications of nano-enabled agrichemicals vs. conventional metal salts in agriculture.
Afficher plus [+] Moins [-]Protective effect of green tea catechin against urban fine dust particle-induced skin aging by regulation of NF-κB, AP-1, and MAPKs signaling pathways
2019
Wang, Lei | Lee, WonWoo | Cui, Yong Ri | Ahn, Ginnae | Jeon, You-Jin
The increase in ambient fine dust particles (FDP) due to urbanization and industrialization has been identified as a major contributor to air pollution. It has become a serious issue that threatens human health because it causes respiratory diseases and skin aging. In the present study, the protective effect of the green tea catechin, (−)-epigallocatechin gallate (EGCG), against FDP (ERM-CZ100)-stimulated skin aging in human dermal fibroblasts (HDFs) was investigated. The results demonstrate that EGCG significantly and dose-dependently scavenged intracellular reactive oxygen species (ROS) in and increased the viability of FDP-stimulated HDFs. In addition, EGCG dose-dependently recovered collagen synthesis and inhibited intracellular elastase and collagenase activities. Moreover, EGCG decreased the expression of human matrix metalloproteinases (MMPs) via regulation of nuclear factor kappa B (NF-κB), activator protein 1 (AP-1), and mitogen-activated protein kinases (MAPKs) signaling pathways in FDP-stimulated HDFs. This study suggests that EGCG is a potential anti-aging candidate that can be used for FDP-induced skin aging as a therapeutic agent itself or as an ingredient in pharmaceutical and cosmeceutical products.
Afficher plus [+] Moins [-]