Affiner votre recherche
Résultats 1-10 de 20
Detection of Neonicotinoids in agriculture soil and degradation of thiacloprid through photo degradation, biodegradation and photo-biodegradation
2022
Elumalai, Punniyakotti | Yi, Xiaohui | Chen, Zhenguo | Rajasekar, Aruliah | Brazil de Paiva, Teresa Cristina | Hassaan, Mohamed A. | Ying, Guang-guo | Huang, Mingzhi
The social and ecological influence of Neonicotinoids (NEOs) usage in agriculture sector is progressively higher. There are seven NEOs insecticides widely used for the insects control. Among the NEOs, thiacloprid (THD) was extensively used for insect control during crop cultivation. This study targets to analyse the contamination levels of NEOs in agricultural soil and identify photo-biodegradation of THD degradation using pure isolates and mixed consortium. The photo degradation (PD), biodegradation (BD) and photo-biodegradation (PBD) of THD were compared. The corn field agricultural soils were polluted by four NEOs, among them THD had greater contamination level (surface soil: 3901.2 ± 0.04 μg/g) and (sub-surface soil: 3988.6 ± 0.05 μg/g). Three soil free enriched bacterial strains following Bacillus atrophaeus (PB-2), Priestia megaterium (PB-3) (formerly known as Bacillus megaterium), and Peribacillus simplex (PB-4) (formerly known as Bacillus simplex) were identified by microbiological and molecular 16s rRNA gene sequencing. The PD, BD and PBD of THD were conducted and degradation rate was detected by instrument UPLC-MS-MS. The PBD process with blue-LEDs showed better THD degradation efficiency than PD and BD, where the specific THD degradation rate was 85 ± 0.2%, 87 ± 0.5%, and 89 ± 0.3%, respectively for PB-2, PB-3 and PB-4. Then, the photo-biodegradation performance is greater at 150, 175, 200 rpm, pH 7.0–9.0, and temperature 30–35 °C. After the PBD system deliver four intermediate metabolites, the THD degradation process maybe through nitro reduction, hydroxylation and oxidative cleavage pathway.
Afficher plus [+] Moins [-]Black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), and house fly, Musca domestica L. (Diptera: Muscidae), larvae reduce livestock manure and possibly associated nutrients: An assessment at two scales
2021
Miranda, Chelsea D. | Crippen, Tawni L. | Cammack, Jonathan A. | Tomberlin, Jeffery K.
The industrial production of insects for waste management or as a protein source is becoming vital to our society. Large volumes of manure are produced by concentrated animal facilities around the globe that must be managed, utilized, and disposed of properly. Flies offer a partial solution with their abilities to reduce these wastes and heavy metal pollutants. Meat and crop proteins are being supplemented by insect proteins for many feeds across the globe, yet science-based studies behind the mass-rearing of insects are still in their infancy. In the current study, the percent change in the composition of nutrients, heavy metals, and fiber, in dairy, poultry, and swine manure degraded by either black soldier fly (BSF) or house fly (HF) larvae was explored. Pre-digested and post-digested manure samples were collected from four independent studies that differed in production scale (number of larvae and feeding regimen): 1) BSF small-scale (100 larvae fed incrementally), 2) HF small-scale (100 larvae fed incrementally), 3) BSF large-scale (10,000 larvae fed a single time), and 4) HF large-scale (4,000 larvae fed a single time). Results indicate that nitrogen is a key nutrient impacted by larval digestion of manure by both species, regardless of scale. However, scale significantly impacted reductions of other nutrients, as did the type of manure in which the insects were reared. Ultimately, this study demonstrated that manure type and rearing scale impact the ability of BSF and HF larvae to reduce nutrients and heavy metals in manure, and thus insect management procedures need to be congruent with production emphases of the insects for waste management or protein products. Failure to take scale into consideration could lead to inaccurate assumptions related to industrialized efforts on this topic.
Afficher plus [+] Moins [-]Essential oil from Negramina (Siparuna guianensis) plants controls aphids without impairing survival and predatory abilities of non-target ladybeetles
2019
Toledo, Pedro F.S. | Ferreira, Taciano P. | Bastos, Isabela M.A.S. | Resende, Sarah M. | Viteri Jumbo, Luis O. | Didonet, Julcemar | Andrade, Bruno S. | Melo, Tarcisio S. | Smagghe, Guy | Oliveira, Eugênio E. | Aguiar, Raimundo W.S.
Plant essential oils are regarded as interesting alternative tools to be integrated into the management of pest insects. However, as they generally consist of mixtures of numerous molecules, the physiological basis for their action is unresolved. Here, we evaluated the effects of essential oil of the Neotropical plant Siparuna guianensis Aubl., commonly known as Negramina, against an important pest insect: the green peach aphid Myzus persicae (Sulzer), and also in two non-target natural enemies: the ladybeetle predators Coleomegilla maculata (DeGeer) and Eriopis connexa (Germar). In addition, we conducted a computational docking analysis for predicting the physical interactions between the two Negramina essential oil major constituents: β-myrcene and 2-undocanone, and the transient receptor potential (TRP) channels as potential binding receptors in the aphid and ladybeetles. As the most important results, Negramina essential oil caused mortality in M. persicae aphids with an LC95 = 1.08 mg/cm2, and also significantly repelled the aphids at concentrations as low as 0.14 mg/cm2. Our computational docking analysis reinforced such selectivity actions as the Negramina essential oil major compounds (i.e., β-myrcene and 2-undocanone) bound to the TRP channels of M. persicae but not to ladybeetle-related TRP channels. Interestingly, the exposure to the Negramina essential oil did not affect the predatory abilities of C. maculata but increased the abilities of E. connexa to prey upon M. persicae. Collectively, our findings provided a physiological basis for the insecticidal and selectivity potential of Negramina essential oil, reinforcing its potential as a tool to be used in integrated pest control programs.
Afficher plus [+] Moins [-]Azadirachtin impairs egg production in Atta sexdens leaf-cutting ant queens
2018
Amaral, Karina Dias | Martínez, Luis Carlos | Pereira Lima, Maria Augusta | Serrão, José Eduardo | Della Lucia, Terezinha M. C.
Leaf-cutting ants are important pests of forests and agricultural crops in the Neotropical region. Atta sexdens colonies can be composed of thousands of individuals, which form a highly complex society with a single reproductive queen. Successful control of this species is achieved only if the queen is affected. Few data are available on the lethal or sublethal effects of toxic compounds on leaf-cutting ant queens. Azadirachtin has been claimed as an effective biopesticide for insect control, but its action on leaf-cutting ants has been little explored. This study shows that azadirachtin affects oviposition in A. sexdens queens, impairing egg development by decreasing protein reserves. Azadirachtin inhibits the synthesis of vitellogenin, the major yolk protein precursor. The negative effects of azadirachtin on the reproduction of leaf-cutting ant queens suggest a potential use for the control of these insects.
Afficher plus [+] Moins [-]Presence of artisanal gold mining predicts mercury bioaccumulation in five genera of bats (Chiroptera)
2018
Kumar, Anjali | Divoll, Timothy J. | Ganguli, Priya M. | Trama, Florencia A. | Lamborg, Carl H.
Mercury, a toxic trace metal, has been used extensively as an inexpensive and readily available method of extracting gold from fine-grained sediment. Worldwide, artisanal mining is responsible for one third of all mercury released into the environment. By testing bat hair from museum specimens and field collected samples from areas both impacted and unimpacted by artisanal gold mining in Perú, we show monomethylmercury (MMHg) has increased in the last 100 years. MMHg concentrations were also greatest in the highest bat trophic level (insectivores), and in areas experiencing extractive artisanal mining. Reproductive female bats had higher MMHg concentrations, and both juvenile and adult bats from mercury contaminated sites had more MMHg than those from uncontaminated sites. Bats have important ecological functions, providing vital ecosystem services such as pollination, seed dispersal, and insect control. Natural populations can act as environmental sentinels and offer the chance to expand our understanding of, and responses to, environmental and human health concerns.
Afficher plus [+] Moins [-]Potential human exposures to neonicotinoid insecticides: A review
2018
Zhang, Q. | Li, Z. | Chang, C.H. | Lou, J.L. | Zhao, M.R. | Lu, C.
Due to their systemic character and high efficacy to insect controls, neonicotinoid insecticides (neonics) have been widely used in global agriculture since its introduction in early 1990. Recent studies have indicated that neonics may be ubiquitous, have longer biological half-lives in the environment once applied, and therefore implicitly suggested the increasing probability for human exposure to neonics. Despite of neonics’ persistent characters and widespread uses, scientific literature in regard of pathways in which human exposure could occur is relatively meager. In this review, we summarized results from peer-reviewed articles published prior to 2017 that address potential human exposures through ingestion and inhalation, as well as results from human biomonitoring studies. In addition, we proposed the use of relative potency factor approach in order to facilitate the assessment of concurrent exposure to a mixture of neonics with similar chemical structures and toxicological endpoints. We believe that the scientific information that we presented in this review will aid to future assessment of total neonic exposure and subsequently human health risk characterization.
Afficher plus [+] Moins [-]Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent
2009
Himanen, Sari J. | Nerg, Anne-Marja | Nissinen, Anne | Stewart, C. Neal Jr | Poppy, Guy M. | Holopainen, Jarmo K.
Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution. Elevated atmospheric ozone can induce fluctuations in insecticidal protein concentrations in transgenic plants.
Afficher plus [+] Moins [-]Trichoderma asperellum reduces phoxim residue in roots by promoting plant detoxification potential in Solanum lycopersicum L
2020
Chen, Shuangchen | Yan, Yaru | Wang, Yaqi | Wu, Meijuan | Mao, Qi | Chen, Yifei | Ren, Jingjing | Liu, Airong | Lin, Xiaomin | Ahammed, Golam Jalal
Phoxim, a broad-spectrum organophosphate pesticide, is widely used in agriculture to control insect pests in vegetable crops as well as in farm mammals. However, the indiscriminate use of phoxim has increased its release into the environment, leading to the contamination of plant-based foods such as vegetables. In this study, we investigated the effect of Trichoderma asperellum (TM, an opportunistic fungus) on phoxim residue in tomato roots and explored the mechanisms of phoxim metabolism through analysis of detoxification enzymes and gene expression. Degradation kinetics of phoxim showed that TM inoculation rapidly and significantly reduced phoxim residues in tomato roots. Phoxim concentrations at 5d, 10d and 15d post treatment were 75.12, 65.71 and 77.45% lower in TM + phoxim than only phoxim treatment, respectively. The TM inoculation significantly increased the glutathione (GSH) content, the activity of glutathione S-transferase (GST) and the transcript levels of GSH, GST1, GST2 and GST3 in phoxim-treated roots. In addition, the activity of peroxidase and polyphenol peroxidase involved in the xenobiotic conversion also increased in TM + phoxim treatment. The expression of detoxification genes, such as CYP724B2, GR, ABC2 and GPX increased by 3.82, 3.08, 7.89 and 2.46 fold, respectively in TM + phoxim compared with only phoxim. Similarly, the content of ascorbate (AsA) and the ratio of AsA to dehydroascorbate increased by 45.16% and 57.34%, respectively in TM + phoxim-treated roots. Our results suggest that TM stimulates plant detoxification potential in all three phases (conversion, conjugation and sequestration) of xenobiotc metabolism, leading to a reduced phoxim residue in tomato roots.
Afficher plus [+] Moins [-]Bulk Deposition of Pesticides in a Canadian City: Part 2. Impact of Malathion Use Within City Limits
2015
Farenhorst, A. | Andronak, L. A. | McQueen, R. D. A.
Malathion is an organophosphate insecticide registered for use in cities throughout North America to control adult mosquitoes. The objective of this study was to determine the impact of urban malathion applications on the levels of malathion detected in bulk deposition. In 2010, malathion was applied by the City of Winnipeg’s Insect Control Branch for a total amount of 6632 kg in the city, as well as by the general public in relatively small amounts. In 2011, no malathion was applied by the city. Malathion was detected in 41 % of the samples in 2010 with deposition rates ranging from 0.5 to 107.7 μg/m²/week. Only 9 % of the samples contained malathion in 2011 with deposition rates always being <0.4 μg/m²/week. Between 6 and 25 % of the samples in 2010 exceeded the toxicological threshold levels of malathion to a range of freshwater amphipods, water fleas, and stoneflies, including Daphnia magna which is a bioindicator of good environmental health. The weekly maximum malathion concentration detected in this study (5.2 μg/L for a week in June 2010) was at least 26 times greater than the maximum concentration of malathion reported in other atmospheric deposition studies. For the two insect management areas (7.4 and 37.6 km²) where the bulk deposition samplers had been placed, calculations suggested that between 1.2 and 5.1 % of the malathion applied by the city became bulk deposition. Percutaneous absorption by humans of malathion in rainfall is unknown.
Afficher plus [+] Moins [-]Eco-friendly pesticide based on peppermint oil nanoemulsion: preparation, physicochemical properties, and its aphicidal activity against cotton aphid
2020
Heydari, Mojgan | Amirjani, Amirmostafa | Bagheri, Mozhgan | Sharifian, Iman | Sabahi, Qodrat
Using organic insecticides including plant oils, it is possible to design a new perspective for the control of insect pests. In this research, nanoemulsion formulations of Mentha piperita, wild-type essential oil (EO) were prepared utilizing high-energy ultrasonication process. Physicochemical properties of nanoemulsions were precisely studied by measurement various parameters including pH, viscosity, conductivity, and zeta potential. Experimental design by the aid of response surface methodology (RSM) was used to highlight the physicochemical roles of EO percentage (1% to 5% (v/v)) and surfactant concentration (3% to 15% (v/v)) for achieving minimum droplet diameter with high physical stability. The nanoemulsion formulations were then characterized using dynamic light scattering, transmission electron microscopy, and optical clarity. Afterward, an appropriate model between the variable factors (EO percentage and surfactant concentration) and the response (hydrodynamic particle size) was statistically developed. Under the optimum conditions, nanoemulsion with hydrodynamic particle size less than 10 nm with high physical stability is obtainable. Bioassay experiments were carried out to elucidate the effects of nanoemulsion on the cotton aphid. Synthesized nanoemulsion formulations showed relatively high contact toxicity (average value of LC₅₀ was about 3879.5 ± 16.2 μl a.i./L) against the pest. On the basis of the obtained results, prepared nanoemulsion using M. piperita is potentially applicable as organic insecticides against cotton aphid. Graphical abstract
Afficher plus [+] Moins [-]