Affiner votre recherche
Résultats 1-10 de 112
Pesticides in a warmer world: Effects of glyphosate and warming across insect life stages
2022
Stahlschmidt, Z.R. | Whitlock, J. | Vo, C. | Evalen, P. | D, Bui
Glyphosate (GLY) is a broad-spectrum herbicide that is the most commonly applied pesticide in terrestrial ecosystems in the U.S. and, potentially, worldwide. However, the combined effects of warming associated with climate change and exposure to GLY and GLY-based formulations (GBFs) on terrestrial animals are poorly understood. Animals progress through several life stages (e.g., embryonic, larval, and juvenile stages) that may exhibit different sensitivities to stressors. Therefore, we factorially manipulated temperature and GLY/GBF exposure in the variable field cricket (Gryllus lineaticeps) during two life stages—nymphal development and adulthood—and examined key animal traits, such as developmental rate, body size, food consumption, reproductive investment, and lifespan. A thermal environment simulating future climate warming obligated several costs to fitness-related traits. For example, warming experienced during nymphal development reduced survival, adult body mass and size, and investment into flight capacity and reproduction. Warming experienced by adults reduced lifespan and growth rate. Alternatively, the effects of GBF exposure were more subtle, often context-dependent (e.g., effects were only detected in one sex or temperature regime), and were stronger during adult exposure relative to exposure during development. There was evidence of additive costs of warming and GBF exposure to rates of feeding and growth in adults. Yet, the negative effect of GBF exposure to adult lifespan did not occur in warming conditions, suggesting that ongoing climate change may obscure some of the costs of GBFs to non-target organisms. The effects of GLY alone (i.e., in the absence of proprietary surfactants found in commercial formulations) were non-existent. Animals will be increasingly exposed to warming and GBFs, and our results indicate that GBF exposure and warming can entail additive costs for an animal taxon (insects) that plays critical roles in terrestrial ecosystems.
Afficher plus [+] Moins [-]The inflammation response and risk associated with aflatoxin B1 contamination was minimized by insect peptide CopA3 treatment and act towards the beneficial health outcomes
2021
Dey, Debasish Kumar | Chang, Sukkum Ngullie | Kang, S. C. (Sun Chul)
This study focused on the possible chemo-preventive effects of insect peptide CopA3 on normal human colon cells against the inflammation induced by the toxic environmental pollutant aflatoxin B1 (AFB1). In the study, we used CCD 841 CoN normal human colon cells to investigate the cytotoxic effect induced by AFB1 and elucidated the negative impact of AFB1 exposure on the cell cycle progression. Further, we also carried out the in-vivo experiment, where male BALB/c mice were administrated with AFB1 to induce inflammation associated cancer like phenotype and the dietary effect of CopA3 was evaluated on the early stages of AFB1-induced hepatotoxicity and inflammation in colon tissues. At the initiation stage, CopA3 was given along with water, which significantly decreased the inflammation in the liver and colon of AFB1 exposed mice model. Mice that received CopA3 alone showed enhanced activity of several antioxidant enzymes. In the post treatment stage, the CopA3 dosage remarkably increased the Ki-67 protein expression, indicating the enhancement in cell proliferation event and increased the number of apoptotic cells in colonic crypts, suggesting the capability of CopA3 treatment towards the epithelial cell turnover. Thus, CopA3 treatment shows its potential to inhibit the development of the early stages of AFB1-induced colon inflammation and hepatotoxicity in mice by inhibiting the DNA synthesis of the damaged and inflammatory cell and induced apoptosis for the clearance of damaged cells. Collectively, the results of this study suggest that CopA3 treatment may play a protective role against the mycotoxin induced inflammation.
Afficher plus [+] Moins [-]Ingestion and effects of cerium oxide nanoparticles on Spodoptera frugiperda (Lepidoptera: Noctuidae)
2021
Castro, Bárbara M.M. | Santos-Rasera, Joyce R. | Alves, Dejane S. | Marucci, Rosangela C. | Carvalho, Geraldo A. | Carvalho, Hudson W.P.
The objective of this study was to evaluate the biological and nutritional characteristics of Spodoptera frugiperda (Lepidoptera: Noctuidae), an arthropod pest widely distributed in agricultural regions, after exposure to nano-CeO₂ via an artificial diet and to investigate the presence of cerium in the body of this insect through X-ray fluorescence mapping. Nano-CeO₂, micro-CeO₂, and Ce(NO₃)₃ were incorporated into the diet (0.1, 1, 10, and 100 mg of Ce L⁻¹). Cerium was detected in caterpillars fed with diets containing nano-CeO₂ (1, 10 and 100 mg of Ce L⁻¹), micro-CeO₂ and Ce(NO₃)₃, and in feces of caterpillars from the first generation fed diets with nano-CeO₂ at 100 mg of Ce L⁻¹ as well. The results indicate that nano-CeO₂ caused negative effects on S. frugiperda. After it was consumed by the caterpillars, the nano-CeO₂ reduced up to 4.8% of the pupal weight and 60% of egg viability. Unlike what occurred with micro-CeO₂ and Ce(NO₃)₃, nano-CeO₂ negatively affected nutritional parameters of this insect, as consumption rate two times higher, increase of up to 80.8% of relative metabolic rate, reduction of up to 42.3% efficiency of conversion of ingested and 47.2% of digested food, and increase of up to 1.7% of metabolic cost and 8.7% of apparent digestibility. Cerium caused 6.8–16.9% pupal weight reduction in second generation specimens, even without the caterpillars having contact with the cerium via artificial diet. The results show the importance of new ecotoxicological studies with nano-CeO₂ for S. frugiperda in semi-field and field conditions to confirm the toxicity.
Afficher plus [+] Moins [-]Artificial light reduces foraging opportunities in wild least horseshoe bats
2021
Luo, Bo | Xu, Rong | Li, Yunchun | Zhou, Wenyu | Wang, Weiwei | Gao, Huimin | Wang, Zhen | Deng, Yingchun | Liu, Ying | Feng, Jiang
Artificial light at night has been proposed as a global threat to biodiversity. Insectivorous bats are strictly nocturnal animals that are vulnerable to disruption from artificial light. Given that many light-sensitive bats tend to avoid night light during roost departure, it is often assumed that nighttime light pollution reduces their foraging opportunities, albeit empirical evidence in support of this hypothesis remains elusive. Here, we used least horseshoe bats, Rhinolophus pusillus, to assess whether white artificial light is detrimental for the opportunities of foraging. We manipulated the levels of ambient illumination and perceived predation risk inside the bat roost. We monitored bats' emergence activity using high-speed video and audio recording systems. DNA-based faecal dietary analysis and insect survey were applied to determine activity time of prey in foraging areas. Following experimentally manipulation of white light-emitting diode (LED) lighting 0–15 min after sunset, bat pass, flight duration, and echolocation pulse emission decreased. The mean emergence time of bats flying out was delayed by 14 min under lit treatment compared with the dark control. Only 10% of bats left for foraging during 40 min of light exposure. Aversive effects of LED light on bat emergence were robust regardless of the presence of a potential predator. Insect prey reached a peak of abundance between 30 and 60 min after sunset. These results demonstrate that white artificial light hinders evening emergence behavior in least horseshoe bats, leading to a mismatch between foraging onset and peak food availability. Our findings highlight that light pollution overrides foraging onset, suggesting the importance of improving artificial lighting scheme near the roosts of light-sensitive bats.
Afficher plus [+] Moins [-]Black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), and house fly, Musca domestica L. (Diptera: Muscidae), larvae reduce livestock manure and possibly associated nutrients: An assessment at two scales
2021
Miranda, Chelsea D. | Crippen, Tawni L. | Cammack, Jonathan A. | Tomberlin, Jeffery K.
The industrial production of insects for waste management or as a protein source is becoming vital to our society. Large volumes of manure are produced by concentrated animal facilities around the globe that must be managed, utilized, and disposed of properly. Flies offer a partial solution with their abilities to reduce these wastes and heavy metal pollutants. Meat and crop proteins are being supplemented by insect proteins for many feeds across the globe, yet science-based studies behind the mass-rearing of insects are still in their infancy. In the current study, the percent change in the composition of nutrients, heavy metals, and fiber, in dairy, poultry, and swine manure degraded by either black soldier fly (BSF) or house fly (HF) larvae was explored. Pre-digested and post-digested manure samples were collected from four independent studies that differed in production scale (number of larvae and feeding regimen): 1) BSF small-scale (100 larvae fed incrementally), 2) HF small-scale (100 larvae fed incrementally), 3) BSF large-scale (10,000 larvae fed a single time), and 4) HF large-scale (4,000 larvae fed a single time). Results indicate that nitrogen is a key nutrient impacted by larval digestion of manure by both species, regardless of scale. However, scale significantly impacted reductions of other nutrients, as did the type of manure in which the insects were reared. Ultimately, this study demonstrated that manure type and rearing scale impact the ability of BSF and HF larvae to reduce nutrients and heavy metals in manure, and thus insect management procedures need to be congruent with production emphases of the insects for waste management or protein products. Failure to take scale into consideration could lead to inaccurate assumptions related to industrialized efforts on this topic.
Afficher plus [+] Moins [-]Pre-migration artificial light at night advances the spring migration timing of a trans-hemispheric migratory songbird
2021
Smith, Reyd A. | Gagné, Maryse | Fraser, Kevin C.
Artificial light at night (ALAN) is increasing at a high rate across the globe and can cause shifts in animal phenology due to the alteration of perceived photoperiod. Birds in particular may be highly impacted due to their use of extra-retinal photoreceptors, as well as the use of photoperiodic cues to time life events such as reproduction, moult, and migration. For the first time, we used light-logging geolocators to determine the amount of ALAN experienced by long-distance migratory songbirds (purple martin; Progne subis) while at their overwintering sites in South America to measure its potential relationship with spring migration timing. Almost a third of birds (48/155; 31%) were subjected to at least one night with ALAN over 30 days prior to spring migration. Birds that experienced the highest number of nights (10+) with artificial light departed for spring migration on average 8 days earlier and arrived 8 days earlier at their breeding sites compared to those that experienced no artificial light. Early spring migration timing due to pre-migration ALAN experienced at overwintering sites could lead to mistiming with environmental conditions and insect abundance on the migratory route and at breeding sites, potentially impacting survival and/or reproductive success. Such effects would be particularly detrimental to species already exhibiting steep population declines such as purple martins and other migratory aerial insectivores.
Afficher plus [+] Moins [-]Effects of two juvenile hormone analogue insecticides, fenoxycarb and methoprene, on Neocaridina davidi
2019
Hu, Xue Lei | Niu, Jiao Jiao | Meng, Qi | Chai, Yuet Hung | Chu, Ka Hou | Chan, King Ming
Juvenile hormone analogue (JHA) insecticides are endocrine disrupters that interfere with hormonal action in insects by mimicking their juvenile hormones (JH). As the structure and functions of methyl farnesoate in crustaceans are similar to those of JH in insects, exogenous JHA insecticides could have adverse effects on the development and reproduction of crustaceans. This study examined the toxic effects of two JHA insecticides, fenoxycarb and methoprene, on a freshwater shrimp model of cherry shrimp, Neocaridina davidi. Both insecticides had detrimental effects on cherry shrimp, but fenoxycarb was more toxic than methoprene. Chronic exposure to these insecticides reduced the shrimp's body length and molting frequency. Based on transcriptome annotations for N. davidi, we identified important gene homologues that were active in both insect JH biosynthetic and degradative pathways as well as JH and ecdysteroid signaling pathways. Chronic treatments with JHAs had significant effects on these genes in N. davidi. Our transcriptomic analysis showed that genes involved in the pathways related to cuticle development, serine protease activity, and carbohydrate, peptide and lipid metabolic processes were differentially expressed in shrimp exposed to JHAs. These results demonstrate the toxicity of fenoxycarb and methoprene to freshwater crustaceans and indicate the need to monitor the use of JHA insecticides.
Afficher plus [+] Moins [-]Dichlorvos alters morphology and behavior in zebrafish (Danio rerio) larvae
2019
Altenhofen, Stefani | Nabinger, Débora Dreher | Bitencourt, Paula Eliete Rodrigues | Bonan, Carla Denise
Dichlorvos (2,2-dichlorovinyl-dimethylphosphate), an organophosphorus pesticide used for indoor insect and livestock parasite control, is among the most common commercially available pesticides. However, there are significant concerns over its toxicity, especially due to its relative stability in water, soil, and air. Zebrafish, an important developmental model, has been used for studying the effects of toxic compounds. The aim of this study was to evaluate the exposure to dichlorvos at early life stages (1 h postfertilization - 7 days postfertilization) in the zebrafish and its toxicological effects during the development, through morphological (7 days postfertilization), locomotor and social behavior analysis (7, 14, 30, 70, and 120 days postfertilization). Dichlorvos (1, 5, and 10 mg/L) exposure reduced the body length and heartbeat rate at 7 days postfertilization (dpf), as well as the surface area of the eyes (5 and 10 mg/L). The avoidance behavior test showed a significant decrease in escape responses at 7 (1, 5, and 10 mg/L) and 14 (5 and 10 mg/L) dpf zebrafish. The evaluation of larval exploratory behavior showed a reduction in distance traveled, mean speed (1, 5, and 10 mg/L) and time mobile (10 mg/L) between control and dichlorvos groups. In addition, the analysis performed on adult animals showed that the changes in distance traveled and mean speed remained reduced in 30 (1, 5, and 10 mg/L) and 70 dpf (5 and 10 mg/L), recovering values similar to the control at 120 dpf. The social behavior of zebrafish was not altered by exposure to dichlorvos in the early stages of development. Thus, the exposure to organophosphorus compounds at early stages of development induces an increased susceptibility to behavioral and neuronal changes that could be associated with several neurodegenerative diseases.
Afficher plus [+] Moins [-]Application of general toxic effects of ionic liquids to predict toxicities of ionic liquids to Spodoptera frugiperda 9, Eisenia fetida, Caenorhabditis elegans, and Danio rerio
2019
Cho, Chul-Woong | Yun, Yeoung-Sang
Modeling for the toxicity of ionic liquids (ILs) is necessary to fill data gaps for untested chemicals and to understand the relevant mechanisms at the molecular level. In order for many researchers to easily predict toxicity and/or develop some prediction model, simple method(s) based on a single parameter should be proposed. Therefore, previously our group developed a comprehensive toxicity prediction model with unified linear free-energy relationship descriptors to address the single parameter for predicting the toxicities, as follows (Cho et al., 2016b).Log 1/toxicity in the unit of mM= (2.254 Ec – 2.545 Sc + 0.646 Ac – 1.471 Bc + 1.650 Vc + 2.917 J+ – 0.201 Ea + 0.418 Va + 0.131 J−) – 0.709.It is considered that the model can calculate the general toxicological effect of ILs in parenthesis, as it was developed on the basis of numerous toxic effects i.e., 58 toxicity testing methods and about 1600 data points. In order to check the hypothesis, the values calculated by the model were correlated with four different datasets from insect cell line (Spodoptera frugiperda 9), earthworm (Eisenia fetida), nematode (Caenorhabditis elegans), and fish (Danio rerio). The results clearly showed that the calculated values are in good agreement with each dataset. In the case of S. frugiperda 9 cells, the calculated parameters were correlated with log1/LC50 values, measured after 24 h and 48 h incubation, in R2 of 0.67 and 0.88, respectively. The R2 values for the earthworm, nematode, and fish were 0.88, 0.96, and 0.94–0.95, respectively. This study confirmed that the comprehensive model can be simply and accurately used to predict toxicity of ILs.
Afficher plus [+] Moins [-]Artificial illumination near rivers may alter bat-insect trophic interactions
2019
Russo, Danilo | Cosentino, Francesca | Festa, Francesca | De Benedetta, Flavia | Pejic, Branka | Cerretti, Pierfilippo | Ancillotto, Leonardo
Artificial illumination at night represents an increasingly concerning threat to ecosystems worldwide, altering persistence, behaviour, physiology and fitness of many organisms and their mutual interactions, in the long-term affecting ecosystem functioning. Bats are very sensitive to artificial light at night because they are obligate nocturnal and feed on insects which are often also responsive to lights. Here we tested the effects of LED lighting on prey-predator interactions at riverine ecosystems, using bats and their insect prey as models, and compared bat and insect reactions in terms of bat activity and prey insect abundance and diversity, respectively, on artificially lit vs. unlit nights. Artificial light influenced both insect and bat assemblages in taxon-specific directions: insect abundances increased at lit sites, particularly due to an increase in small dipterans near the light source. Composition of insect assemblages also differed significantly between lit and unlit sites. Total bat activity declined at lit sites, but this change was mainly due to the response of the most abundant species, Myotis daubentonii, while opportunistic species showed no reaction or even an opposite pattern (Pipistrellus kuhlii). We show that artificial lighting along rivers may affect trophic interactions between bats and insects, resulting in a profound alteration of community structure and dynamics.
Afficher plus [+] Moins [-]