Affiner votre recherche
Résultats 1-10 de 181
Increasing salinization of freshwater limits invasiveness of a live-bearing fish: Insights from behavioral and life-history traits Texte intégral
2022
Zhou, Linjun | Liu, Kai | Zhao, Yu | Cui, Ling | Dong, Chenglong | Wang, Zaizhao
Biological invasions and continued salinization of freshwater are two global issues with largely serious ecological consequences. Increasing salinity in freshwater systems, as an environmental stressor, may negatively affect normal life activities in fish. It has been documented that salinity limits the invasive success of alien species by mediating physiological and life-history performances, however, there are few studies on how salinity affects its invasive process via altered behaviors. Using wild-caught invasive western mosquitofish (Gambusia affinis) as animal model, in this study, we asked whether gradual increasing salinity affects behaviors (personality and mate choice decision here), life-history traits, as well as the correlation between them by exposing G. affinis to three levels salinity (freshwater, 10 and 20‰). Results showed that, with increased salinity, male tended to be shyer, less active, less sociable, and reduced desire to mate, and female tended to be shyer, less active and lost preferences for the larger male. Furthermore, across salinity treatments, male exhibited reduced body fat content and rising reproduction allocation, however, pregnant female revealed diametrically opposed trends. In addition, the correlation between life-history traits and behaviors was only identified in pregnant female. It seems that either salinity or life-history traits directly affects mosquitofish behaviors. In summary, our results partially emphasize the harmful consequences of salinity on both life-history traits and behavioral performances. These findings provide a novel perspective on how salinity potentially affect fish fitness via altering personalities, mate choice decisions, as well as body condition, and hence supports the idea that salinity could affect the spread of invasive mosquitofish.
Afficher plus [+] Moins [-]Assemblage of encrusting organisms on floating anthropogenic debris along the northern coast of the Persian Gulf Texte intégral
2019
Shabani, Fatemeh | Nasrolahi, Ali | Thiel, Martin
Global concern about floating marine debris and its fundamental role in shaping coastal biodiversity is growing, yet there is very little knowledge about debris-associated rafting communities in many areas of the world's oceans. In the present study, we examined the encrusting assemblage on different types of stranded debris (wood, plastic, glass, and metal cans) along the Iranian coast of the Persian Gulf. In total, 21 taxa were identified on 132 items. The average frequency of occurrence (±SE) across all sites and stranded debris showed that the barnacle Amphibalanus amphitrite (68.9 ± 1.1%), the oyster Saccostrea cucullata (40.9 ± 0.7%), the polychaete Spirobranchus kraussii (27.3 ± 0.5%), green algae (22 ± 0.5%) and the coral Paracyathus stokesii (14.4 ± 0.7%) occurred most frequently. Relative substratum coverage was highest for A. amphitrite (44.3 ± 2.7%), followed by green algae (14.4 ± 1.5%), Spirobranchus kraussii (9.3 ± 1.3%), Saccostrea cucullata (7.6 ± 1.3%) and the barnacle Microeuraphia permitini (5.8 ± 0.9%). Despite the significant difference in coverage of rafting species on plastic items among different sites, there was no clear and consistent trend of species richness and coverage from the eastern (Strait of Hormuz) to the western part of the Persian Gulf. Some rafting species (bryozoans and likely barnacles) were found to be non-indigenous species in the area. As floating marine debris can transport non-indigenous species and increase the risk of bio-invasions to this already naturally- and anthropogenically-stressed water body, comprehensive monitoring efforts should be made to elucidate the vectors and arrival of new invasive species to the region.
Afficher plus [+] Moins [-]Mutagenicity assessment of aerosols in emissions from wood combustion in Portugal Texte intégral
2012
Vu, B. | Alves, C.A. | Gonçalves, C. | Pio, C. | Gonçalves, F. | Pereira, R.
Mutagenicity assessment of aerosols in emissions from wood combustion in Portugal Texte intégral
2012
Vu, B. | Alves, C.A. | Gonçalves, C. | Pio, C. | Gonçalves, F. | Pereira, R.
Polycyclic aromatic hydrocarbon (PAH) extracts of fine particles (PM₂.₅) collected from combustion of seven wood species and briquettes were tested for mutagenic activities using Ames test with Salmonella typhimurium TA98 and TA100. The woods were Pinus pinaster (maritime pine), Eucalyptus globulus (eucalypt), Quercus suber (cork oak), Acacia longifolia (golden wattle), Quercus faginea (Portuguese oak), Olea europea (olive), and Quercus ilex rotundifolia (Holm oak). Burning experiments were done using woodstove and fireplace, hot start and cold start conditions. A mutagenic response was recorded for all species except golden wattle, maritime pine, and briquettes. The mutagenic extracts were not correlated with high emission factors of carcinogenic PAHs. These extracts were obtained both from two burning appliances and start-up conditions. However, fireplace seemed to favour the occurrence of mutagenic emissions. The negative result recorded for golden wattle was interesting, in an ecological point of view, since after confirmation, this invasive species, can be recommended for domestic use.
Afficher plus [+] Moins [-]Mutagenicity assessment of aerosols in emissions from wood combustion in Portugal
Effects of herbicides on Behr's metalmark butterfly, a surrogate species for the endangered butterfly, Lange's metalmark Texte intégral
2012
Stark, John D. | Chen, Xue Dong | Johnson, Catherine S.
Lange's metalmark butterfly, Apodemia mormo langei Comstock, is in danger of extinction due to loss of habitat caused by invasive exotic plants which are eliminating its food, naked stem buckwheat. Herbicides are being used to remove invasive weeds from the dunes; however, little is known about the potential effects of herbicides on butterflies. To address this concern we evaluated potential toxic effects of three herbicides on Behr's metalmark, a close relative of Lange's metalmark. First instars were exposed to recommended field rates of triclopyr, sethoxydim, and imazapyr. Life history parameters were recorded after exposure. These herbicides reduced the number of adults that emerged from pupation (24–36%). Each herbicide has a different mode of action. Therefore, we speculate that effects are due to inert ingredients or indirect effects on food plant quality. If these herbicides act the same in A. mormo langei, they may contribute to the decline of this species.
Afficher plus [+] Moins [-]Forest health conditions in North America Texte intégral
2008
Tkacz, Borys | Moody, Ben | Villa Castillo, Jamie | Fenn, Mark E.
Some of the greatest forest health impacts in North America are caused by invasive forest insects and pathogens (e.g., emerald ash borer and sudden oak death in the US), by severe outbreaks of native pests (e.g., mountain pine beetle in Canada), and fires exacerbated by changing climate. Ozone and N and S pollutants continue to impact the health of forests in several regions of North America. Long-term monitoring of forest health indicators has facilitated the assessment of forest health and sustainability in North America. By linking a nationwide network of forest health plots with the more extensive forest inventory, forest health experts in the US have evaluated current trends for major forest health indicators and developed assessments of future risks. Canada and Mexico currently lack nationwide networks of forest health plots. Development and expansion of these networks is critical to effective assessment of future forest health impacts.
Afficher plus [+] Moins [-]Response of spatio-temporal changes in sediment phosphorus fractions to vegetation restoration in the degraded river-lake ecotone Texte intégral
2022
Yan, Zhiwei | Wu, Ling | Lv, Tian | Tong, Chao | Gao, Zhongyao | Liu, Yuan | Xing, Bin | Chao, Chuanxin | Li, Yang | Wang, Ligong | Liu, Chunhua | Yu, Dan
Phosphorus (P) is an essential element in the ecosystem and the cause of the eutrophication of rivers and lakes. The river-lake ecotone is the ecological buffer zone between rivers and lakes, which can transfer energy and material between terrestrial and aquatic ecosystems. Vegetation restoration of degraded river-lake ecotone can improve the interception capacity of P pollution. However, the effects of different vegetation restoration types on sediment P cycling and its mechanism remain unclear. Therefore, we seasonally measured the P fractions and physicochemical properties of sediments from different restored vegetation (three native species and one invasive species). The results found that vegetation restoration significantly increased the sediment total P and bioavailable P content, which increased the sediment tolerance to P pollution in river-lake ecotone. In addition, the total P content in sediments was highest in summer and autumn, but lower in spring and winter. The total P and bioavailable P contents in surface sediments were the highest. They decreased with increasing depth, suggesting that sediment P assimilation by vegetation restoration and the resulting litter leads to redistribution of P in different seasons and sediment depths. Microbial biomass-P (MBP), total nitrogen (TN), and sediment organic matter (SOM) are the main factors affecting the change of sediment phosphorus fractions. All four plants’ maximum biomass and P storage appeared in the autumn. Although the biomass and P storage of the invasive species Alternanthera philoxeroides were lower, the higher bioavailable P content and MBP values of the surface sediments indicated the utilization efficiency of sediment resources. These results suggest that vegetation restoration affects the distribution and circulation of P in river and lake ecosystems, which further enhances the ecological function of the river-lake ecotone and prevents the eutrophication and erosion of water and sediment in the river-lake ecotone.
Afficher plus [+] Moins [-]Marine invertebrate larvae love plastics: Habitat selection and settlement on artificial substrates Texte intégral
2020
Pinochet, Javier | Urbina, Mauricio A. | Lagos, Marcelo E.
Global urbanization and plastic pollution has increased the availability and variety of substrates for sessile organisms, and are intensively used by invasive species for settlement. Despite extensive literature describing the strong association between artificial structures and invasive species, little effort has been directed towards identifying the larval traits that favor this selection. Larval selection and settlement are crucial as larvae actively search and interpret environmental cues to identify suitable habitats to settle. The aim of this research was to investigate if invertebrate larvae have a preference for a particular anthropogenic substrate, and how pre-settlement behaviors vary when encountering different substrates. We used two invasive bryozoan species, Bugula flabellata and Bugula neritina, which are commonly found in urbanized areas around the world. Energy expenditure during planktonic and benthonic stages, pre-settlement swimming/exploring behaviors, settlement and larval selectivity were quantified under laboratory conditions on different substrates (concrete, wood, polystyrene, polyvinyl chloride, polyethylene terephthalate and polycarbonate). The energy expenditure measured was higher in planktonic larvae than in early settled larvae. Larvae of both species swam less and explored more when exposed to plastic surfaces, suggesting a preference for this substrate and resulting in lower energy expenditures associated with searching for habitat. Larvae actively chose to settle on plastics rather than on wood or concrete substrates. The results suggest that for Bugula larvae, the likelihood of colonizing plastic surfaces is higher than other materials commonly found in urbanized coastal areas. The more quickly they adhere to artificial substrates the lower the energy expenditure, contributing to higher fitness in these individuals. The strong preference of invertebrate larvae for plastics can potentially extend the distribution range of many invasive marine species as they are able to travel long distances attached to floating debris. This phenomenon will likely exacerbate the introduction of exotic species into novel habitats.
Afficher plus [+] Moins [-]A comparative review and analysis of tentative ecological quality objectives (EcoQOs) for protection of marine environments in Korea and China Texte intégral
2018
Khim, Jong Seong | Hong, Seongjin | Yoon, Seo Joon | Nam, Jungho | Ryu, Jongseong | Kang, Seong-Gil
Ecological quality objectives (EcoQOs), as tools for implementing ecosystem approach, have long been acknowledged to protect the marine ecosystems and fisheries in regional seas through joint efforts by surrounding countries over the past decade. The present review analyzed the best available meta-data relating to the five ecosystem elements that were recently proposed by the Northwest Pacific Action Plan to evaluate the current status of coastal ecosystem health in marine environment of the Yellow Sea. We suggested the six tentative EcoQOs among five ecological quality elements including: 1) biological and habitat diversity; 2) invasive species; 3) eutrophication; 4) pollutants; and 5) marine litters. Environmental status was assessed, depending on the EcoQOs targets, by comparison to the world average values, existing environmental standards, or reported values of other regional seas. Results of analysis revealed that among the six tentative EcoQOs, two target objectives to marine biodiversity and concentrations of nutrients (viz., DIN and DIP) were met towards good environmental status. Whilst, three EcoQOs relating to hypoxia and red-tide, pollutants (persistent toxic substances and metals), and marine litters (including microplastics) did not meet and one relating to invasive species could not be judged due to insufficient data sets. The biggest weak point for developing suitable EcoQOs and assessing status of ecosystem health could be insufficient meta-data sets available and/or discrepancy in methodological details cross the data-sets or between the two targeted countries. Thus, the cooperation of neighboring countries, viz., Korea and China for the Yellow Sea, is necessary for the ecosystem based management of our regional sea in the future. Overall, this first time review for the assessment of target tentative EcoQOs in the Yellow Sea region encompassing coasts of Korea and China would provide a better understanding of the current status of environmental pollution and ecosystem health.
Afficher plus [+] Moins [-]Life stage-specific effects of the fungicide pyrimethanil and temperature on the snail Physella acuta (Draparnaud, 1805) disclose the pitfalls for the aquatic risk assessment under global climate change Texte intégral
2013
Seeland, Anne | Albrand, Jennifer | Oehlmann, Jörg | Müller, Ruth
It can be suggested that the combined stress of pesticide pollution and suboptimal temperature influences the sensitivity of life stages of aquatic invertebrates differently.The embryo, juvenile, half- and full-life-cycle toxicity tests performed with the snail Physella acuta at different concentrations (0.06–0.5 or 1.0 mg L−1) of the model fungicide pyrimethanil at 15, 20 and 25 °C revealed, that pyrimethanil caused concentration-dependent effects at all test temperatures. Interestingly, the ecotoxicity of pyrimethanil was higher at lower (suboptimal) temperature for embryo hatching and F1 reproduction, but its ecotoxicity for juvenile growth and F0 reproduction increased with increasing temperature.The life-stage specific temperature-dependent ecotoxicity of pyrimethanil and the high fungicide susceptibility of the invasive snail clearly demonstrate the complexity of pesticide–temperature interactions and the challenge to draw conclusions for the risk of pesticides under the impact of global climate change.
Afficher plus [+] Moins [-]Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae) Texte intégral
2009
Sorensen, Mary A. | Parker, David R. | Trumble, John T.
Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4-), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brullé. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system.
Afficher plus [+] Moins [-]