Affiner votre recherche
Résultats 1-10 de 306
Fluctuating asymmetry of invertebrate populations as a biological indicator of environmental quality.
1993
Clarke G.M.
Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates. A review.
1989
Tyler G. | Balsberg Paahlsson A.M. | Bengtsson G. | Baaaath E. | Tranvik L.
Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels?
2015
Sulmon, Cécile | van Baaren, Joan | Cabello-Hurtado, Francisco | Gouesbet, Gwenola | Hennion, Françoise | Mony, Cendrine | Renault, D | Bormans, Myriam | Amrani, Abdelhak El | Wiegand, Claudia | Gérard, Claudia | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Environmental Pollution, in press | International audience | Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental complexity. We provide new insights into the understanding of the impact of molecular and cellular responses on individual and population dynamics and assess the potential related effects on communities and ecosystem functioning.
Afficher plus [+] Moins [-]Artificial light at night (ALAN) affects behaviour, but does not change oxidative status in freshwater shredders
2022
Czarnecka, Magdalena | Jermacz, Łukasz | Glazińska, Paulina | Kulasek, Milena | Kobak, Jarosław
Artificial light at night (ALAN) alters circadian rhythms in animals and therefore can be a source of environmental stress affecting their physiology and behaviour. The impact of ALAN can be related to the increased light level, but also to the spectral composition of night lighting. Previous research showed that many species can be particularly sensitive to the LED light, but it is unclear if they respond to its broad spectrum or specifically to the blue light wavelength. In this study, we tested whether dim ALAN (2 lx) differing in the spectral quality (warm white LED, blue LED, high-pressure sodium HPS light) modifies behaviour and changes oxidative status in two nocturnal freshwater shredder species: Dikerogammarus villosus and Gammarus jazdzewskii (Gammaroidea, Amphipoda). Our experiment revealed that ALAN, irrespective of its spectral quality, did not affect the oxidative stress markers in cells (the level of reactive oxygen species and lipid peroxidation). However, ALAN changed the gammarid behaviour in a species-specific manner, which can potentially reduce the fitness of the shredders. Dikerogammarus villosus avoided all types of light compared to darkness. Therefore, confined to the shelter, D. villosus may have fewer opportunities to forage and/or mate. Gammarus jazdzewskii was sensitive only to the narrow-spectrum blue light, but did not respond to the HPS and white LED light. Avoidance is a typical response of gammarids to natural light, thus the disruption of this behaviour in the presence of common ALAN sources can increase the predation risk in this species. To summarize, behavioural modifications induced by ALAN seem more pronounced than changes in physiology and can constitute the main driver of disturbances in the processing of organic matter in freshwater ecosystems by invertebrate shredders.
Afficher plus [+] Moins [-]Bioavailability for organic chemical bioaccumulation follows the power law
2021
Wang, Rubing | Li, Xinmeng | Chui, Kawai | Hu, Canyang | Wang, Zhuhua | Chen, Jingwen | Cai, Xiyun
Despite the importance of bioavailability for organic chemical bioaccumulation by terrestrial and benthic invertebrates, the principles of bioavailability for organic chemical bioaccumulation remain poorly understood. Here we use large-scale databases with contrasting geographic, compound and organism coverage (from 925 sites, 446 compounds and 184 invertebrate species), and report that bioavailability for organic chemical bioaccumulation follows the power law. It represents that the internal concentration of organic chemicals is the composite power function of the lipid fraction of invertebrates, bulk site concentration of compounds, and organic carbon content of soils/sediments. This law directly links environmental exposures and body burdens of organic chemicals in contaminated sites, and provides a method for enabling case-specific risk assessments of a vast number of organic chemicals and contaminated sites. Our findings may pave the way for translating bioavailability knowledge into risk-oriented regulation of organic chemicals and contaminated sites.
Afficher plus [+] Moins [-]Ingestion of plastic litter by the sandy anemone Bunodactis reynaudi
2020
Weideman, Eleanor A. | Munro, Christie | Perold, Vonica | Omardien, Aaniyah | Ryan, Peter G.
Ingestion of anthropogenic litter has been well documented in marine vertebrates, but comparatively little is known about marine invertebrates. We report macrolitter ingestion by the sandy anemone Bunodactis reynaudi at Muizenberg beach in False Bay, South Africa. Monthly surveys from May 2015 to August 2019 collected 491 ingested litter items (9.4 ± 14.9 items·month⁻¹, 39.8 ± 71.5 g·month⁻¹), of which >99% were plastic. The number of ingested items was correlated with the abundance of stranded items and ingestion peaked in autumn when seasonal rains washed more litter into the bay. Most ingested litter was clear (39%), white (16%) and black/purple (15%). Comparison with environmental litter showed selection for flexible plastics, particularly bags/packets and food packaging. Experimental feeding trials found that B. reynaudi selected for pieces of HDPE bag suspended in seawater for 2–20 days, suggesting that biofilms enhance the palatability of flexible plastics. Studies are needed to assess the possible impacts of plastic ingestion on B. reynaudi. While only a small proportion of the population currently ingest litter, ingestion might become more common if environmental litter loads increase. This might negatively affect the anemone’s ability to respond to other environmental changes such as increasing levels of heavy metal pollution.
Afficher plus [+] Moins [-]The toxicity of silver nanomaterials (NM 300K) is reduced when combined with N-Acetylcysteine: Hazard assessment on Enchytraeus crypticus
2020
Mendonça, Monique C.P. | Rodrigues, Natália P. | Scott-Fordsmand, Janeck J. | Jesus, Marcelo Bispo de | Amorim, Mónica J.B.
The widespread production and use of silver nanomaterials (AgNMs) in consumer and medical products have been raising environmental concerns. Once in the environment, the soil is one of the major sinks of AgNMs due to e.g. sewage sludge applications, and invertebrates are directly exposed. In this study, we investigate the potential of N-acetylcysteine (NAC) to reduce the toxic effects of Ag NM300 K (and AgNO3) on the soil invertebrate Enchytraeus crypticus. Ag NM300 K induces mortality, reproduction impairment, and avoidance. The addition of NAC to the soil showed a remarkable reduction in the toxicity of Ag, indicating that NAC can act as a detoxifying agent for terrestrial organisms exposed to Ag materials. That the reduction in toxicity likely is caused by thiol groups, was confirmed by GSH and GSSH studies. Identifying the mechanisms and hence alternatives that allow the recovery of contaminated soils is an important mitigation measure to promote environmental safety and reduce the associated risks to human health. Further, it may inform on strategies to implement in safe-by-design industry development.
Afficher plus [+] Moins [-]Comparative contributions of copper nanoparticles and ions to copper bioaccumulation and toxicity in barnacle larvae
2019
Yang, Li | Wang, Wen-Xiong
Cu nanoparticles (CuNPs) have been widely used in numerous products, and may become a potential threat to marine organisms, but their behavior in the marine environments and potential toxicity to marine organisms remain little known. In the present study, we investigated the behavior of CuNPs in seawater, as well as the toxicity and bioaccumulation of CuNPs and copper sulfate (CuSO4) in barnacle larvae (Balanus amphitrite), a dominant fouling invertebrate in marine environment. CuNPs tended to aggregate in natural seawater and released Cu ion rapidly into seawater. The aggregation and release were especially higher at a lower concentration of CuNPs, e.g., 94–96% of CuNPs were released as Cu ions at 20 μg/L after 24 h. The larger size of CuNPs (40 nm) tended to display a higher solubility than the 20 nm CuNPs did. Humic acids enhanced the aggregation and inhibited the dissolution of CuNPs, and had a protective effect on the survival of nauplii II at higher Cu concentrations (100–200 μg/L). Comparison of the lethal concentrations showed that CuNPs were generally less toxic to the two stages of barnacle larvae (nauplii II and VI) than the Cu ions. The calculated 48-h LC50 values for nauplii II were 189.5 μg/L, 123.2 μg/L, and 89.8 μg/L for 20 nm CuNPs, 40 nm CuNPs, and CuSO4, respectively. However, the lethal concentrations of Cu bioaccumulation in the barnacle larvae were comparable between CuNPs and Cu ions when expressed by the actual tissue Cu bioaccumulation. Barnacle larval settlement decreased with an increase of Cu concentrations of both CuNPs and CuSO4, and was significantly inhibited at 100 μg/L CuSO4 and 150 μg/L CuNPs. Our results indicated that the toxicity of CuNPs could not be solely explained by the released Cu ions, and both CuNPs and the released Cu ion contributed to their toxicity and bioaccumulation in barnacle larvae.
Afficher plus [+] Moins [-]Surface coatings select their micro and macrofouling communities differently on steel
2019
Agostini, Vanessa Ochi | Macedo, Alexandre José | Muxagata, Erik | Pinho, Grasiela Lopes Leães
Previous studies have shown the effect of surface coatings on biofouling; however, they did not take into account the interaction of the micro and macrofouling communities, the effect of substrate orientation and the zooplankton-zoobenthic coupling together. Therefore, the aim of this study was to evaluate the effect of Zn- and Cu₂O-based coatings on micro and macrofouling on steel surfaces, while also observing the role of substrate orientation and zooplankton supply. An experiment was carried out in the Patos Lagoon Estuary in southern Brazil for three months between spring and summer, where ASTM-36 steel plates represented different coatings (Zn- and/or Cu₂O-based) and orientations (vertical and horizontal). To assess the zooplankton supply, sampling was carried out weekly using a 200 μm plankton net. Zn-based coating positively affected microfouling density compared to uncoated surfaces. The same pattern was observed with macrofouling, associated with vagile fauna preference, which represented 70% of the settled macrofoulers. Cu₂O-based antifouling painted surfaces showed the highest microfouling density inhibition, while Zn + Cu₂O-based coating did not affect the bacteria adhesion but showed lower density compared to Zn-based coating alone. The coatings combination showed the highest invertebrate inhibition. In this way, the macrofouling community was more sensitive than microfouling was to the antifouling coatings tested. The substrate orientation only affected macrofouling, horizontal surfaces being more attractive than vertical. Meroplankton, tychoplankton and holoplankton were recorded on the surfaces, although their representation in plankton was not proportional to the recruits recorded on the substrates. This was probably due to fast dispersion, the interactions of other factors and/or ecological succession stage. Surface coating, substrate orientation, and zooplankton supply interacted with the biofouling process on steel in different ways depending on the organism evaluated. Therefore, copper oxide- and zinc-based coatings were not suitable as coatings to avoid the total biofouling establishment.
Afficher plus [+] Moins [-]Environmentally relevant methylmercury exposure reduces the metabolic scope of a model songbird
2019
Gerson, Alexander R. | Cristol, Daniel A. | Seewagen, Chad L.
For most birds, energy efficiency and conservation are paramount to balancing the competing demands of self-maintenance, reproduction, and other demanding life history stages. Yet the ability to maximize energy output for behaviors like predator escape and migration is often also critical. Environmental perturbations that affect energy metabolism may therefore have important consequences for fitness and survival. Methylmercury (MeHg) is a global pollutant that has wide-ranging impacts on physiological systems, but its effects on the metabolism of birds and other vertebrates are poorly understood. We investigated dose-dependent effects of dietary MeHg on the body composition, basal and peak metabolic rates (BMR, PMR), and respiratory quotients (RQ) of zebra finches (Taeniopygia guttata). Dietary exposure levels (0.0, 0.1, or 0.6 ppm wet weight) were intended to reflect a range of mercury concentrations found in invertebrate prey of songbirds in areas contaminated by atmospheric deposition or point-source pollution. We found adiposity increased with MeHg exposure. BMR also increased with exposure while PMR decreased, together resulting in reduced metabolic scope in both MeHg-exposed treatments. There were differences in RQ among treatments that suggested a compromised ability of exposed birds to rapidly metabolize carbohydrates during exercise in a hop-hover wheel. The elevated BMR of exposed birds may have been due to energetic costs of depurating MeHg, whereas the reduced PMR could have been due to reduced oxygen carrying capacity and/or reduced glycolytic capacity. Our results suggest that environmentally relevant mercury exposure is capable of compromising the ability of songbirds to both budget and rapidly exert energy.
Afficher plus [+] Moins [-]