Affiner votre recherche
Résultats 1-10 de 60
Agricultural impacts drive longitudinal variations of riverine water quality of the Aral Sea basin (Amu Darya and Syr Darya Rivers), Central Asia
2021
Leng, Peifang | Zhang, Qiuying | Li, Fadong | Kulmatov, Rashid | Wang, Guoqin | Qiao, Yunfeng | Wang, Jianqi | Peng, Yu | Tian, Chao | Zhu, Nong | Hirwa, Hubert | Khasanov, Sayidjakhon
River ecosystems are under increasing stress in the background of global change and ever-growing anthropogenic impacts in Central Asia. However, available water quality data in this region are insufficient for a reliable assessment of the current status, which come as no surprise that the limited knowledge of regulating processes for further prediction of solute variations hinders the development of sustainable management strategies. Here, we analyzed a dataset of various water quality variables from two sampling campaigns in 2019 in the catchments of two major rivers in Central Asia—the Amu Darya and Syr Darya Rivers. Our results suggested high spatial heterogeneity of salinity and major ion components along the longitudinal directions in both river catchments, pointing to an increasing influence of human activities toward downstream areas. We linked the modeling outputs from the global nutrient model (IMAGE-GNM) to riverine nutrients to elucidate the effect of different natural and anthropogenic sources in dictating the longitudinal variations of the riverine nutrient concentrations (N and P). Diffuse nutrient loadings dominated the export flux into the rivers, whereas leaching and surface runoff constituted the major fractions for N and P, respectively. Discharge of agricultural irrigation water into the rivers was the major cause of the increases in nutrients and salinity. Given that the conditions in Central Asia are highly susceptible to climate change, our findings call for more efforts to establish holistic management of water quality.
Afficher plus [+] Moins [-]Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study
2020
Varol, Memet
The Sürgü Stream, located in the Euphrates River basin of Turkey, is used for drinking water source, agricultural irrigation and rainbow trout production. Therefore, water quality of the stream is of great importance. In this study, multivariate statistical techniques (MSTs) and water quality index (WQI) were applied to assess water quality of the stream affected by multiple stressors such as untreated domestic sewage, effluents from fish farms, agricultural runoff and streambank erosion. For this, 16 water quality parameters at five sites along the stream were monitored monthly during one year. Most of parameters showed significant spatial variations, indicating the influence of anthropogenic activities. All parameters except TN (total nitrogen) showed significant seasonal differences due to high seasonality in WT (water temperature) and water flow. The spatial variations in the WQI were significant (p < 0.05) and the mean WQI values ranged from 87.6 to 95.3, indicating “good” to “excellent” water quality in the stream. Cluster analysis classified five sites into three groups, that is, clean region, low polluted region and very clean region. Stepwise temporal discriminant analysis (DA) identified that pH, WT, Cl⁻, SO₄²⁻, COD (chemical oxygen demand), TSS (total suspended solids) and Ca²⁺ are the parameters responsible for variations between seasons, and stepwise spatial DA identified that DO (dissolved oxygen), EC (electrical conductivity), NH₄–N, TN (total nitrogen) and TSS are the parameters responsible for variations between the regions. Principal component analysis/factor analysis revealed that the parameters responsible for water quality variations were mainly associated with suspended solids (both natural and anthropogenic), soluble salts (natural) and nutrients and organic matter (anthropogenic).
Afficher plus [+] Moins [-]The removal of microorganisms and organic micropollutants from wastewater during infiltration to aquifers after irrigation of farmland in the Tula Valley, Mexico
2011
Chávez, Alma | Maya, Catalina | Gibson, Richard | Jiménez, Blanca
The Tula Valley receives untreated wastewater from Mexico City for agricultural irrigation, half of which infiltrates to aquifers from where drinking water is extracted. Samples of wastewater and infiltrated water from three areas of the valley were analyzed for microorganisms, organic micropollutants, and some basic parameters. Concentrations of microorganisms in the infiltrated water were generally very low but the incidence of fecal coliforms (present in 68% of samples), somatic bacteriophages (36%), Giardia spp. (14%), and helminth eggs (8%) suggested a health risk. Organic micropollutants, often present at high concentrations in the wastewater, were generally absent from the infiltrated water except carbamazepine which was in 55% of samples (up to 193 ng/L). There was no correlation between carbamazepine concentrations and the presence of microorganisms but highest concentrations of carbamazepine and boron coincided. A treatment such as nanofiltration would be necessary for the infiltrated water to be a safe potable supply.
Afficher plus [+] Moins [-]Modeling the fate and human health impacts of pharmaceuticals and personal care products in reclaimed wastewater irrigation for agriculture
2021
Shahriar, Abrar | Tan, Junwei | Sharma, Priyamvada | Hanigan, David | Verburg, Paul | Pagilla, Krishna | Yang, Yu
Wastewater reclamation and reuse for agriculture have attracted a great deal of interest, due to water stress caused by rapid increase in human population and agricultural water demand as well as climate change. However, the application of treated wastewater for irrigation can lead to the accumulation of pharmaceuticals and personal care products (PPCPs) in the agricultural crops, grazing animals, and consequently to human dietary exposure. In this study, a model was developed to simulate the fate of five PPCPs; triclosan (TCS), carbamazepine (CBZ), naproxen (NPX), gemfibrozil (GFB), and fluoxetine (FXT) during wastewater reuse for agriculture, and potential human dietary exposure and health risk. In a reclaimed wastewater-irrigated grazing farm growing alfalfa, it took 100–535 days for PPCPs to achieve the steady-state concentrations of 1.43 × 10⁻⁶, 4.73 × 10⁻⁵, 1.17 × 10⁻⁶, 1.53 × 10⁻⁵, and 7.38 × 10⁻⁶ mg/kg for TCS, CBZ, NPX, GFB, and FXT in soils, respectively. The accumulated concentration of PPCPs in the plant (alfalfa) and grazing animals (beef) ranged 2.86 × 10⁻⁷− 4.02 × 10⁻³ and 4.39 × 10⁻¹⁵− 6.27 × 10⁻⁷ mg/kg, respectively. Human dietary exposure to these compounds through beef consumption was calculated to be 1.67 × 10⁻¹⁸− 1.74 × 10⁻¹⁰ mg/kg bodyweight/d, much lower than the acceptable daily intake (ADI). Similar results were obtained for a ‘typical’ reclaimed wastewater irrigated farm based on the typical setup using our model. Screening analysis showed that PPCPs with relatively high LogD value and lower ratios of degradation rate (in soils) to plant uptake have a greater potential to be transferred to humans and cause potential health risks. We established a modeling method for evaluating the fate and human health effects of PPCPs in reclaimed wastewater reuse for the agricultural system and developed an index for screening PPCPs with high potential to accumulate in agricultural products. The model and findings are valuable for managing water reuse for irrigation and mitigating the harmful effects of PPCPs.
Afficher plus [+] Moins [-]Hydro-chemical and microbiological pollution assessment of irrigation water in Kızılırmak Delta (Turkey)
2020
Şener, Şehnaz | Şener, Erhan | Varol, Simge
The Kızılırmak Delta is one of the most important agricultural production regions and it was included as part of the Ramsar Convention in 1998. The water used in agricultural irrigation is mostly supplied from drainage channels. In the present study, 120 water samples were collected from drainage channels and analyzed to characterize the groundwater chemistry and microbiological contamination. Sea water interface, discharge of sewage, wastewater from agricultural activities and livestock and uncontrolled solid waste landfills were identified as the most important pollutant sources in the delta. Serious microbiological pollution was detected in channel water samples. These results indicate that sewage waters mix with the channel waters in the delta. Also, the correlations of parameters such as EC, TDS, DO, Cl⁻ and SO₄²⁻ indicate that channel waters contain high dissolved minerals. It was concluded that especially agricultural pollution and waste water affects water resources negatively in the region.
Afficher plus [+] Moins [-]Effect of transpiration on plant accumulation and translocation of PPCP/EDCs
2015
Dodgen, Laurel K. | Ueda, Aiko | Wu, Xiaoqin | Parker, David R. | Gan, Jay
The reuse of treated wastewater for agricultural irrigation in arid and hot climates where plant transpiration is high may affect plant accumulation of pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs). In this study, carrot, lettuce, and tomato plants were grown in solution containing 16 PPCP/EDCs in either a cool-humid or a warm-dry environment. Leaf bioconcentration factors (BCF) were positively correlated with transpiration for chemical groups of different ionized states (p < 0.05). However, root BCFs were correlated with transpiration only for neutral PPCP/EDCs (p < 0.05). Neutral and cationic PPCP/EDCs showed similar accumulation, while anionic PPCP/EDCs had significantly higher accumulation in roots and significantly lower accumulation in leaves (p < 0.05). Results show that plant transpiration may play a significant role in the uptake and translocation of PPCP/EDCs, which may have a pronounced effect in arid and hot climates where irrigation with treated wastewater is common.
Afficher plus [+] Moins [-]Accumulation of Cd in agricultural soil under long-term reclaimed water irrigation
2013
Chen, Weiping | Lu, Sidan | Peng, Chi | Jiao, Wentao | Wang, Meie
Safety of agricultural irrigation with reclaimed water is of great concern as some potential hazardous compounds like heavy metals may be accumulated in soils over time. Impacts of long-term reclaimed water on soil Cd pollution were evaluated based on the field investigation in two main crop areas in Beijing with long irrigation history and on simulation results of STEM-profile model. Under long-term reclaimed water, Cd content in the top 20 cm soil layer was greatly elevated and was more than 2 times higher than that in the deep soil layer. There was very small differences between the field measured and model simulated Cd content in the plow layer (top 20 cm) and entire soil layer. Long-term model prediction showed that reclaimed water irrigation had a low environmental risk of soil Cd pollution, but the risk would be aggravated when there were high metal loading from other sources. The risk is also depending on the soil and plant properties.
Afficher plus [+] Moins [-]Spatiotemporal variations of dissolved CH4 concentrations and fluxes from typical freshwater types in an agricultural irrigation watershed in Eastern China
2022
Zhang, Tianrui | Wu, Shuang | Fang, Xiantao | Han, Zhaoqiang | Li, Shuqing | Wang, Jinyang | Liu, Shuwei | Zou, Jianwen
Inland freshwater ecosystems are of increasing concerns in global methane (CH₄) budget in the atmosphere. Agricultural irrigation watersheds are a potential CH₄ emission hotspot owing to the anthropogenic carbon and nutrients loading. However, large-scale spatial variations of CH₄ concentrations and fluxes in agricultural catchments remain poorly understood, constraining an accurate regional estimate of CH₄ budgets. Here, we examined the spatiotemporal variations of dissolved CH₄ concentrations and fluxes from typical freshwater types (ditch, reservoir and river) within an agricultural irrigation watershed from Hongze catchment, which is subjected to intensive agricultural and rural activities in Eastern China. The dissolved CH₄ concentrations and fluxes showed similar temporal variations among the three freshwater types, with the highest rates in summer and the lowest rates in winter. The total CH₄ emission from this agricultural irrigation watershed was estimated to be 0.002 Gg CH₄ yr⁻¹, with annual mean CH₄ concentration and flux of 0.12 μmol L⁻¹ and 0.58 mg m⁻² d⁻¹, respectively. Diffusive CH₄ fluxes varied in samples taken from different freshwater types, the annual mean CH₄ fluxes for ditch, reservoir and river were 0.31 ± 0.06, 0.71 ± 0.13 and 0.72 ± 0.25 mg m⁻² d⁻¹, respectively. Among three freshwater types, the CH₄ fluxes were the lowest in ditch, which was associated with the lowest responses of CH₄ fluxes to water dissolved oxygen (DO), nitrate nitrogen (NO₃⁻-N) and sediment dissolved organic carbon (DOC) concentrations in ditch. In addition, water velocity and wind speed were significantly lower in ditch than in reservoir and river, suggesting that they also played important roles in explaining the spatial variability of dissolved CH₄ concentrations and fluxes. These results highlighted a need for more field measurements with wider spatial coverage and finer frequency, which would further improve the reliability of flux estimates for assessing the contribution of agricultural watersheds to the regional and global CH₄ budgets.
Afficher plus [+] Moins [-]Identification and apportionment of shallow groundwater nitrate pollution in Weining Plain, northwest China, using hydrochemical indices, nitrate stable isotopes, and the new Bayesian stable isotope mixing model (MixSIAR)
2022
He, Song | Li, Peiyue | Su, Fengmei | Wang, Dan | Ren, Xiaofei
Groundwater nitrate (NO₃⁻) pollution is a worldwide environmental problem. Therefore, identification and partitioning of its potential sources are of great importance for effective control of groundwater quality. The current study was carried out to identify the potential sources of groundwater NO₃⁻ pollution and determine their apportionment in different land use/land cover (LULC) types in a traditional agricultural area, Weining Plain, in Northwest China. Multiple hydrochemical indices, as well as dual NO₃⁻ isotopes (δ¹⁵N–NO₃ and δ¹⁸O–NO₃), were used to investigate the groundwater quality and its influencing factors. LULC patterns of the study area were first determined by interpreting remote sensing image data collected from the Sentinel-2 satellite, then the Bayesian stable isotope mixing model (MixSIAR) was used to estimate proportional contributions of the potential sources to groundwater NO₃⁻ concentrations. Groundwater quality in the study area was influenced by both natural and anthropogenic factors, with anthropological impact being more important. The results of LULC revealed that the irrigated land is the dominant LULC type in the plain, covering an area of 576.6 km² (57.18% of the total surface study area of the plain). On the other hand, the results of the NO₃⁻ isotopes suggested that manure and sewage (M&S), as well as soil nitrogen (SN), were the major contributors to groundwater NO₃⁻. Moreover, the results obtained from the MixSIAR model showed that the mean proportional contributions of M&S to groundwater NO₃⁻ were 55.5, 43.4, 21.4, and 78.7% in the forest, irrigated, paddy, and urban lands, respectively. While SN showed mean proportional contributions of 29.9, 43.4, 61.5, and 12.7% in the forest, irrigated, paddy, and urban lands, respectively. The current study provides valuable information for local authorities to support sustainable groundwater management in the study region.
Afficher plus [+] Moins [-]Wastewater fertigation in agriculture: Issues and opportunities for improved water management and circular economy
2022
Mainardis, Matia | Cecconet, Daniele | Moretti, Alessandro | Callegari, Arianna | Goi, Daniele | Freguia, Stefano | Capodaglio, Andrea G.
Water shortages are an issue of growing worldwide concern. Irrigated agriculture accounts for about 70% of total freshwater withdrawals globally, therefore alternatives to use of conventional sources need to be investigated. This paper critically reviews the application of treated wastewater for agricultural fertigation (i.e., water and nutrient recovery) considering different perspectives: legislation, agronomic characteristics, social acceptability, sustainability of treatment technologies. Critical issues that still need further investigation for a wider application of fertigation practices include accumulation of emerging contaminants in soils, microbiological and public health implications, and stakeholders' acceptance. A techno-economic methodological approach for assessing the sustainability of treated wastewater reuse in agriculture is subsequently proposed herein, which considers different possible local conditions (cultivated crops and effluent characteristics). The results showed that tailoring effluent characteristics to the desired nutrient composition could enhance the process economic sustainability; however, water savings have a major economic impact than fertilizers’ savings, partly due to limited P reuse efficiency. The developed methodology is based on a practical approach and may be generalized to most agricultural conditions, to evaluate and encourage safe and efficient agricultural wastewater reuse practices.
Afficher plus [+] Moins [-]