Affiner votre recherche
Résultats 1-10 de 22
High throughput screening of photocatalytic conversion of pharmaceutical contaminants in water
2017
Romão, Joana | Barata, David | Ribeiro, Nelson | Habibovic, Pamela | Fernandes, Hugo | Mul, Guido
The susceptibility for photon-induced degradation of over 800 pharmaceutical compounds present in the LOPAC1280 library, was analyzed by UV/Vis spectroscopy in the absence or presence of TiO2 P25 in water. In general, few compounds were effectively degraded in the absence of the TiO2 photocatalyst (3% of all compounds tested), while in the presence of TiO2, the majority of compounds was converted, often to a large degree. Differences in degree of degradation are evaluated on the basis of molecular weight, as well as the chemical nature of the drug compounds (functional groups and pharmacological classes). In general, if the molecular weight increases, the degradation efficacy decreases. Relatively high degrees of conversion can be achieved for (relatively small) molecules with functional groups such as aldehydes, alcohols, ketones and nitriles. A low degree of conversion was observed for compounds composed of conjugated aromatic systems. Trends in degradation efficacy on the basis of pharmacological class, e.g. comparing hormones and opioids, are not obvious.
Afficher plus [+] Moins [-]Detection of semi-volatile compounds in cloud waters by GC×GC-TOF-MS. Evidence of phenols and phthalates as priority pollutants
2018
Although organic species are transported and efficiently transformed in clouds, more than 60% of this organic matter remains unspeciated. Using GCxGC-HRMS technique we were able to detect and identify over 100 semi-volatile compounds in 3 cloud samples collected at the PUY station (puy de Dôme mountain, France) while they were present at low concentrations in a very small sample volume (<25 mL of cloud water). The vast majority (∼90%) of the detected compounds was oxygenated, while the absence of halogenated organic compounds should be specially mentioned. This could reflect both the oxidation processes in the atmosphere (gas and water phase) but also the need of the compounds to be soluble enough to be transferred and dissolved in the cloud droplets. Furans, esters, ketones, amides and pyridines represent the major classes of compounds demonstrating a large variety of potential pollutants. Beside these compounds, priority pollutants from the US EPA list were identified and quantified. We found phenols (phenol, benzyl alcohol, p-cresole, 4-ethylphenol, 3,4-dimethylphenol, 4-nitrophenol) and dialkylphthalates (dimethylphthalate, diethylphthalate, di-n-butylphthalate, bis-(2-ethylhexyl)-phthalate, butylbenzylphthalate, di-n-octyl phthalate). In general, the concentrations of phthalates (from 0.09 to 52 μg L−1) were much higher than those of phenols (from 0.03 to 0.74 μg L−1). To our knowledge phthalates in clouds are described here for the first time. We investigated the variability of phenols and phthalates concentrations with cloud air mass origins (marine vs continental) and seasons (winter vs summer). Although both factors seem to have an influence, it is difficult to deduce general trends; further work should be conducted on large series of cloud samples collected in different geographic areas and at different seasons.
Afficher plus [+] Moins [-]A multi-year study of VOC emissions at a chemical waste disposal facility using mobile APCI-MS and LPCI-MS instruments
2018
Healy, Robert M. | Chen, Qingfeng | Bennett, Julie | Karellas, Nicholas S.
Real-time analysis of volatile organic compounds (VOCs) in air is useful both for source identification and emissions compliance applications. In this work, two complementary triple quadrupole mass spectrometers, fitted with an atmospheric pressure chemical ionization (APCI) and a low pressure chemical ionization (LPCI) source, respectively, were deployed simultaneously to investigate emissions of VOCs associated with an Ontario-based chemical waste disposal facility. Mobile measurements performed upwind and downwind of the facility enabled selection of the best locations for stationary sampling. Seven separate field studies were undertaken between 2000 and 2016 to assess how emissions of VOCs have changed at the site as a function of time. Up to twenty-nine VOCs were successfully identified and quantified using MS/MS in each study. Simultaneous deployment of the two mass spectrometers enabled the detection of polar VOCs including alcohols, esters, amines and ketones as well as non-polar aromatic VOCs including benzene and naphthalene in real time. Concentrations of VOCs were found to decrease significantly in the vicinity of the facility over the sixteen year period, in particular since 2007. Concentration values for each year are compared with odour thresholds and provincial guidelines and implications of future expansion of on-site solid waste landfill volumes are also discussed.
Afficher plus [+] Moins [-]Response of Rhizobium to Cd exposure: A volatile perspective
2017
Cardoso, Paulo | Santos, Magda | Freitas, Rosa | Rocha, Sílvia M. | Figueira, Etelvina
The volatile metabolome of Rhizobium sp. strain E20-8 exposed to three concentrations of cadmium (2.5, 5.0 and 7.5 μM) was screened using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GC × GC–ToFMS), combined with headspace solid phase microextraction (HS-SPME). Cd exposure induced a global increase in the concentration of volatile organic compounds (VOCs) both intra and extracellularly. Peak areas of several linear alkanes, ketones, aldehydes, alcohols, terpenic and volatile sulfur compounds, and one ester (ethyl acetate), were especially increased when compared with the control condition (no Cd). These compounds might originate from the metabolization of toxic membrane peroxidation products, the proteolysis of oxidized proteins or the alteration of metabolic pathways, resulting from the oxidative stress imposed by Cd. Several VOCs are related to oxidative damage, but the production of VOCs involved in antioxidant response (menthol, α-pinene, dimethyl sulfide, disulfide and trisulfide, 1-butanol and 2-butanone) and in cell aggregation (2,3-butanedione, 3-methyl-1-butanol and 2-butanone) is also observed. These results bring new information that highlights the role of VOCs on bacteria response to Cd stress, identify a novel set of biomarkers related with metal stress and provide information to be applied in biotechnological and remediation contexts.
Afficher plus [+] Moins [-]Fate of oxygenated intermediates in solar irradiated diluted bitumen mixed with saltwater
2017
Yang, Zeyu | Zhang, Gong | Hollebone, Bruce P. | Brown, Carl E. | Yang, Chun | Lambert, Patrick | Wang, Zhendi | Landriault, Mike | Shah, Keval
Two types of diluted bitumen (dilbit) and a light crude oil spiked onto the surface of saltwater were irradiated with natural solar light in Ottawa to assess the impact of sunlight to the fate of oxygenated intermediates. Oxygenated components, including carbonyl polycyclic aromatic hydrocarbons (PAHs) and acidic polar fractions (naphthenic acid fraction compounds, NAFCs), were identified after periods of solar exposure under both winter and summer conditions. Carbonyl PAHs and NAFCs were formed in both seasons; however, light crude and summer irradiation produced higher abundance of them than dilbits and winter exposure. The formed NAFCs were abundant with the congeners containing a heteroatom of oxygen only (Oo species), accompanied by the minor amounts of sulfur- and nitrogen-containing acids. The produced Oo species were predominant with the congeners with light molecular weight, high degree of saturation and heavy oxygen numbers. For both carbonyl PAHs and NAFCs, their abundance continually increased throughout the period of winter exposure. In the summer, some carbonyl PAHs and all Oo species increased during the early exposure period; then they decreased with continued exposure for most oils, illustrating their transitional nature. Oxygenated intermediates thus appear to have been created through the photo-oxidation of non-to medium-polar petroleum hydrocarbons or the intermediates of aldehydes or ketones (O1). Oil properties, the duration of exposure, exposure season and the chemical structure of these intermediates are critical factors controlling their fate through photo-oxidation. The observed chemical changes highlight the effects of sunlight on the potential behavior, fate and impact of spilled oil, with the creation of new resin group compounds and the reduction of aromatics and saturates. These results also imply that the ecological effects of spilled oil, after ageing in sunlight, depend on the specific oil involved and the environmental conditions.
Afficher plus [+] Moins [-]Screening and health risk of organic micropollutants in rural groundwater of Liaodong Peninsula, China
2016
Li, Xuehua | Shang, Xiaochen | Luo, Tianlie | Du, Xu | Wang, Ya | Xie, Qing | Matsuura, Naoki | Chen, Jingwen | Kadokami, Kiwao
Groundwater serves as a main drinking water source for rural residents in China. However, little is known regarding the pollution of organic micropollutants in groundwater that may pose health risks. In this study, more than 1300 organic micropollutants were screened in the groundwater samples collected from 13 drinking water wells distributed across five rural regions of Liaodong Peninsula in China. A total of 80 organic micropollutants including 12 polycyclic aromatic hydrocarbons, 11 alkanes, 9 pesticides, 7 substituted phenols, 7 perfluoroalkyl acids, 6 heterocyclic compounds, 5 alcohols, 5 phthalic acid esters, 5 pharmaceutical and personal care products, 3 ketones, 2 polychlorinated biphenyls (PCBs), 2 alkylbenzenes and 2 chlorinated benzenes were detected, with their total concentration of 32–1.5 × 104 ng/L. Noncarcinogenic and carcinogenic risks of a part of pollutants were assessed. Exposure through skin absorption and oral ingestion was considered in the assessment. Generally the risks are within the acceptable limits, except for that the carcinogenic risk at two sites in Jinzhou is higher than 10−6. To the best of our knowledge, this is the first report on health risks of groundwater micropollutants in China.
Afficher plus [+] Moins [-]Geochemical imprints of occurrence, vertical distribution and sources of aliphatic hydrocarbons, aliphatic ketones, hopanes and steranes in sediment cores from ten Iranian Coral Islands, Persian Gulf
2019
Jafarabadi, Ali Ranjbar | Dashtbozorg, Mehdi | Bakhtiari, Alireza Riyahi | Maisano, Maria | Cappello, Tiziana
The levels, vertical distribution and sources of hydrocarbons and petroleum biomarkers were estimated for the first time in sediment cores (0–40 cm) from ten coral Islands of the Persian Gulf, Iran. Discrepant hydrocarbons, including linear n-alkanes (n-C₁₁ to n-C₄₀) and isoprenoids (AHs), aliphatic ketones (AKs), hopanes and steranes were measured in all core samples, showing mean concentrations ranging from 209 to 5388 μg g⁻¹dw (∑₃₀AH), 2–244 μg g⁻¹-dw (∑₁₃AK), 189–3713 ng g⁻¹dw (∑₃₁hopane) and 42–3864 ng g⁻¹dw (∑₁₅sterane), respectively. All sediment cores were found to be petroleum polluted, with ∑₃₀AH > ∑₃₁hopane > ∑₁₅sterane > ∑₁₃AK, with higher levels recorded at 10–20 cm, mainly at industrial sites. Various diagnostic indices revealed that hydrocarbons derived mainly from anthropogenic inputs, with significant contribution of biogenic origin at sites less polluted. Moreover, total organic carbon (0.24–23.45 mg g⁻¹-dw), terrestrial and marine organic matter had an overwhelming effect on hydrocarbons deposition in sediment cores. Overall, findings provide relevant information for monitoring and preventing petroleum pollution in the sensitive ecosystems of the Persian Gulf.
Afficher plus [+] Moins [-]Sorption of three synthetic musks by microplastics
2018
Zhang, Xiaojun | Zheng, Minggang | Wang, Ling | Lou, Yinghua | Shi, Lei | Jiang, Shujun
Microplastics and synthetic musks (SMs) are two typical organic pollutants in the marine environment. In this study, the sorption of three SMs to microplastics in a simulated seawater environment was examined. Tonalide (AHTN), musk xylene (MX), and musk ketone (MK) were the musks investigated, while polypropylene (PP) was used as the microplastic. It was found that the equilibrium sorption time was about 10h and the adsorption kinetics model conformed to a Lagergren adsorption model. The adsorption capacity increased with decreasing particle size. Adsorption reached a peak at 25°C, and the adsorption capacity was not sensitive to the concentration of sodium chloride. There is a need for more research and monitoring of microplastics in the marine environment due to their strong ability to absorb organic pollutants.
Afficher plus [+] Moins [-]UV-TiO2 Photocatalytic Degradation of Landfill Leachate
2011
Jia, Chenzhong | Wang, Yanxin | Zhang, Caixiang | Qin, Qiaoyan
Mature landfill leachate contains some macromolecular organic substances that are resistant to biodegradation. The photocatalytic process helps to enhance biodegradability of landfill leachate. Batch experiments were employed to determine the optimum conditions for removal of organic matter by UV-TiO2 photocatalysis. Under optimum conditions, the removal of chemical oxygen demand (COD), dissolved organic carbon (DOC), biological oxygen demand (BOD), and color was determined. Moreover, gas chromatography coupled with mass spectrometry (GC/MS) was used to analyze the organic matter in the treated leachate before and after treatment by the photocatalysis. The experimental results indicated that the removal of COD, DOC, and color by UV-TiO2 photocatalysis could reach above 60%, 70% and 97%, respectively. Under optimal conditions, the ratio of biological oxygen demand (BOD)/chemical oxygen demand (COD) was elevated from 0.09 to 0.39, representing substantial improvement in biodegradability. GC/MS analysis revealed that 37 out of 72 kinds of organic pollutants in the leachate remained after 72 h treatment. Esters were produced during photocatalytic process and ketones, hydrocarbons, aromatic hydrocarbons, hydroxybenzenes, and acids were easier to be degraded during photocatalytic oxidation processes. The UV-TiO2 photocatalysis systems proposed may be a cost-effective approach for pre-treatment of landfill leachate.
Afficher plus [+] Moins [-]Ambient Levels and Sources of Lower Carbonyls at Montelibretti, Rome (Italy)
2007
Possanzini, Massimiliano | Tagliacozzo, Giorgio | Cecinato, Angelo
Concentration levels of 11 lower carbonyls were studied at Montelibretti, a semi-rural area near Rome, Italy, over July-September 2005 and February 2006. In both periods the most abundant carbonyls were acetone and formaldehyde, followed by methylglyoxal, acetaldehyde and hexanal. Monthly variation was apparent with maximum values observed in July, when levels at least a factor two higher compared to the successive months were observed. In summer all carbonyls except acetone were reasonably well correlated among themselves and with ozone. In addition very high formaldehyde/benzene concentration ratios were measured in the summer months compared to February. These findings indicated that photochemical reactions should be the major source of carbonyls in summer. Ranking of carbonyls respect to ozone production potential emphasized the predominance of formaldehyde and methylglyoxal, followed at a distance by glyoxal and acetaldehyde.
Afficher plus [+] Moins [-]