Affiner votre recherche
Résultats 1-10 de 99
Power Recovery and Sulfate Removal from Rubber Wastewater with the Novel Model Multi-Electrode Microbial Fuel Cell Texte intégral
2021
Chaijak, Pimprapa | Sato, Chikashi
Microbial fuel cell (MFC) is a well-known technology that can convert contaminated substrate in the wastewater to electrical power. To gain more power output, the multi-electrode MFC was developed owing to it has a high surface area for anaerobic microbe adhesion. Here we show the multi-anode was made from the bamboo charcoal was combined with laccase-based cathode in the ceramic separator MFC for the rubber wastewater treatment and enhancing the power generation. The untreated rubber wastewater with initial COD and contaminated sulfate concentration of 3,500 mg/L and 1,100 mg/L was used as a anolyte. The 843.33±5.77 mA/m3 of CD, the 711.23±9.76 mW/m3 of PD were generated. Moreover, this system reached 83.07±3.01% of sulfate removal when it was operated at 30 °C for 12 hr. This study recommended that multi-anode with laccase based MFC can more successfully produce energy from untreated rubber wastewater. it will be greater in terms of electricity generation and sulfate removal.
Afficher plus [+] Moins [-]Melanoidin Removal and Electricity Generation of Palm Oil Mill Effluent by Oxidoreductase Producing Consortium with Air-Cathode Microbial Fuel Cell Texte intégral
2022
Chaijak, Pimprapa | Thipraksa, Junjira | Michu, Panisa
Melanoidin is the hazardous dark brown byproduct generated during palm oil extraction in the crude palm oil industry. In this study, the laccase-producing consortium W3 (Bacillus licheniformis and Bacillus subtilis) was used to degrade melanoidin and decolorize palm oil mill effluent (POME). The microbial fuel cell (MFC) has been applied for enhancing decolorization and generation of electrical energy as a byproduct. The results displayed the maximal melanoidin removal of 95.20±0.10% was gained when the consortium W3 was added into the synthetic wastewater. While the maximal decolorization of 75.10±0.12% and 73.91±0.23% were gained from the sterile POME and raw POME respectively without chemical addition. Moreover, the power output of 2.13±0.05 W/m3 or 0.27±0.01 W/m2 was achieved from the POME-fed MFC with W3. This study gained new knowledge of using the laccase-producing bacterial consortium integrated with MFC for melanoidin removal from the POME and generation of electrical power as an alternative energy source.
Afficher plus [+] Moins [-]Spent waste from edible mushrooms offers innovative strategies for the remediation of persistent organic micropollutants: A review Texte intégral
2022
Ghose, Anamika | Mitra, Sudip
Urgent and innovative strategies for removal of persistent organic micropollutants (OMPs) in soil, groundwater, and surface water are the need of the hour. OMPs detected in contaminated soils and effluents from wastewater treatment plants (WWTPs) are categorized as environmentally persistent pharmaceutical pollutants (EPPPs), and endocrine disrupting chemicals (EDCs), their admixture could cause serious ecological issues to the non-target species. As complete eradication of OMPs is not possible with the extant conventional WWTPs technology, the inordinate and reckless application of OMPs negatively impacts environmental regenerative and resilience capacity. Therefore, the cardinal focus of this review is the bioremediation of persistent OMPs through efficient application of an agro-waste, i.e. spent mushroom waste (SMW). This innovative, green, long-term strategy embedded in the circular economy, based on state of the art information is comprehensively assessed in this paper. SMW accrues ligninolytic enzymes such as laccase and peroxidase, with efficient mechanism to facilitate biodegradation of recalcitrant organic pollutants. It is vital in this context that future research should address immobilization of such enzymes to overcome quantitative and qualitative issues obstructing their widespread use in biodegradation. Therefore, dual benefit is gained from cultivating critical cash crops like mushrooms to meet the escalating demand for food resources and to aid in biodegradation. Hence, mushroom cultivation has positive environmental, social, and economic implications in developing countries like India.
Afficher plus [+] Moins [-]Intergenerational effects of environmentally-aged microplastics on the Crassostrea gigas Texte intégral
2022
Bringer, Arno | Cachot, Jérôme | Dubillot, Emmanuel | Prunier, Grégoire | Huet, Valérie | Clérandeau, Christelle | Evin, Louise | Thomas, Hélène
This study focused on the impacts of aged aquaculture microplastics (MPs) on oysters (Crassostrea gigas). Adult oysters were exposed for two months to a cocktail of MPs representative of the contamination of the Pertuis Charentais area (Bay of Biscay, France) and issuing from oyster framing material. The MPs mixture included 28% of polyethylene, 40% of polypropylene and 32% of PVC (polyvinyl chloride). During the exposure, tissues were sampled for various analyzes (MP quantification, toxicity biomarkers). Although no effect on the growth of adult oysters was noted, the mortality rate of bivalves exposed to MPs (0.1 and 10 mg. L⁻¹ MP) increased significantly (respectively 13.3 and 23.3% of mortalities cumulative). On the one hand, the responses of biomarkers revealed impacts on oxidative stress, lipid peroxidation and environmental stress. At 56 days of exposure, significant increases were noted for Glutathione S-Transferase (GST, 10 mg. L⁻¹ MP), Malondialdehyde (MDA, 10 mg. L⁻¹ MP) and Laccase (LAC, 0.1 and 10 mg. L⁻¹ MP). No variations were observed for Superoxyde Dismutase (SOD). Besides, ingestion of MPs in oyster tissues and the presence in biodeposits was highlighted. In addition, in vitro fertilisations were performed to characterize MPs effects on the offspring. Swimming behavior, development and growth of D-larvae were analysed at 24-, 48- and 72-h after fertilisation. D-larvae, from exposed parents, demonstrated reduced locomotor activity. Developmental abnormalities and arrest as well as growth retardation were also noted. This study highlighted direct and intergenerational effects of MPs from aged plastic materials on Pacific oysters.
Afficher plus [+] Moins [-]Global characterization of dose-dependent effects of cadmium in clam Ruditapes philippinarum Texte intégral
2021
Zhan, Junfei | Wang, Shuang | Li, Fei | Ji, Chenglong | Wu, Huifeng
Cadmium (Cd) is being frequently detected in marine organisms. However, dose-dependent effects of Cd challenged unraveling the toxicological mechanisms of Cd to marine organisms and developing biomarkers. Here, the dose-dependent effects of Cd on clams Ruditapes philippinarum following exposure to 5 doses of Cd (3, 9, 27, 81, 243 μg/L) were investigated using benchmark dose (BMD) method. By model fitting, calculation of BMD values was performed on transcriptomic profiles, metals concentrations, and antioxidant indices. Cd exposure induced not only significant Cd accumulation in clams, but also marked alterations of essential metals such as Ca, Cu, Zn, Mn, and Fe. Gene regulation posed little influence on essential metal homeostasis, indicated by poor enrichment of differentially expressed genes (DEGs) associated with metal binding and metal transport in lower concentrations of Cd-treated groups. BMD analysis on biological processes and pathways showed that peptide cross-linking was the most sensitive biological process to Cd exposure, followed by focal adhesion, ubiquitin mediated proteolysis, and apoptosis. Occurrence of apoptosis was also confirmed by TUENL-positive staining in gills and hepatopancreas of clams treated with Cd. Furthermore, many DEGs, such as transglutaminases (TGs), metallothionein (MT), STEAP2-like and laccase, which presented linear or monotonic curves and relatively low BMD values, were potentially preferable biomarkers in clams to Cd. Overall, BMD analysis on transcriptomic profiles, metals concentrations and biochemical endpoints unraveled the sensitiveness of key events in response to Cd treatments, which provided new insights in exploring the toxicological mechanisms of Cd in clams as well as biomarker selection.
Afficher plus [+] Moins [-]Acute effects of PAH contamination on microbial community of different forest soils Texte intégral
2020
Picariello, Enrica | Baldantoni, Daniela | De Nicola, Flavia
Polycyclic aromatic hydrocarbons (PAHs) are hazardous organic compounds with mutagenic, genotoxic and carcinogenic properties. Although PAHs in soil can cause toxicity to microorganisms, the microbial community is able to degrade these compounds. For this reason, it is important to study acute and short-term effects of PAH contamination on soil microbial community, also to shed light on its possible exploitation in soil restoration.The effects of acute PAH contamination on the structure and metabolic activity of microbial communities in three forest (beech, holm oak, black pine) soils were studied. The soils were spiked with phenanthrene, pyrene or benzo[a]pyrene and incubated in experimental mesocosms, under controlled conditions. Enzymatic activities (laccase, total peroxidase and hydrolase), as well as microbial biomass and community structure (through phospholipid fatty acid and ergosterol analyses), were evaluated in the three soil systems 4 days after contamination and compared to no-spiked soils. In soil under holm oak, there was a stimulation of Gram+ bacteria after contamination with all the 3 PAHs, whereas in soil under pine, pyrene and phenanthrene additions mainly stimulated fungi and actinomycetes.
Afficher plus [+] Moins [-]Inhibitory effect of microplastics on soil extracellular enzymatic activities by changing soil properties and direct adsorption: An investigation at the aggregate-fraction level Texte intégral
2020
Yu, Hong | Fan, Ping | Hou, Junhua | Dang, Qiuling | Cui, Dongyu | Xi, Beidou | Tan, Wenbing
Microplastics (MPs), as a new type of environmental pollutant, pose a serious threat to soil ecosystems. The activities of soil extracellular enzymes produced by microorganisms are the potential sensitive indicators of soil quality. However, little is known about the response mechanism of enzyme activities toward MPs on a long-term scale. Moreover, information on differences in enzyme activities across different soil aggregates is lacking. In this study, 150 days of incubation experiments and soil aggregate fractionation were combined to investigate the influence of MPs on extracellular enzyme activities in soil. 28% concentration of polyethylene with size 100 μm was adopted in the treatments added with MPs. The results show that MPs inhibited enzyme activities through changing soil nutritional substrates and physicochemical properties or through adsorption. Moreover, MPs competed with soil microorganisms for physicochemical niches to reduce microbial activity and eventually, extracellular enzyme activity. Enzyme activities in different aggregate-size fractions responded differently to the MPs exposure. The catalase in the coarse particulate fraction and phenol oxidase and β-glucosidase in the micro-aggregate fraction exerted the greatest response. With comparison, urease, manganese peroxidase, and laccase activities showed the greatest responses in the non-aggregated silt and clay fraction. These observations are believed to stem from differences in the key factors determining the enzyme activities in different aggregate-size fractions.The inhibitory pathway of microplastics on activities of extracellular enzymes in soil varies significantly across different aggregate fractions.
Afficher plus [+] Moins [-]Transcriptomic responses of catalase, peroxidase and laccase encoding genes and enzymatic activities of oil spill inhabiting rhizospheric fungal strains Texte intégral
2018
Asemoloye, Michael Dare | Ahmad, Rafiq | Jonathan, Segun Gbolagade
Fungi are well associated with the degradation of hydrocarbons by the production of different enzymes, among which catalases (CBH), laccases (LCC) and peroxidases (LiP and MnP) are of immense importance. In this study, crude oil tolerance and enzyme secretions were demonstrated by rhizospheric fungal strains. Four most abundant strains were isolated from the rhizosphere of grasses growing in aged oil spill sites and identified through morphological characterization and molecular PCR-amplification of 5.8–28S ribosomal rRNA using ITS1 and ITS4 primers. These strains were subjected to crude oil tolerance test at 0–20% concentrations. Presence and transcriptase responses of putative genes lig (1–6), mnp, cbh (1.1, 1.1 and 11), and lcc encoding lignin peroxidase, manganese peroxidase, catalase, and laccase enzymes respectively were also studied in these strains using RT-PCR. In addition, activities of secreted enzymes by each strain were studied in aliquots. The strains were identified as Aspergillus niger asemoA (KY473958), Talaromyces purpurogenus asemoF (KY488463), Trichoderma harzianum asemoJ (KY488466), and Aspergillus flavus asemoM (KY488467) through sequencing and comparing the sequences’ data at NCBI BLAST search software. All the isolated strains showed tolerance to crude oil at 20% concentration, but the growth rate reduced with increasing in oil concentrations. All the isolated strains possess the tested genes and lig 1–6 gene was overexpressed in A. niger and T. harzianum while lcc and mnp genes were moderately expressed in all the four strains. Almost 145 U.mL⁻¹ of lignin and manganese peroxidase, 87 U.mL⁻¹ of catalase, and 180 U.mL⁻¹ of laccase enzymes were produced by these strains and it was also observed that these strain mostly produced studied enzymes in response to increasing crude oil concentrations. Considering the robust nature and diverse production of these catalytic enzymes by these strains, they can be exploited for various bioremediation technologies as well as other biotechnological applications.
Afficher plus [+] Moins [-]Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid Texte intégral
2017
Sun, Kai | Kang, Fuxing | Waigi, Michael Gatheru | Gao, Yanzheng | Huang, Qingguo
Triclosan (TCS) is a broad-spectrum antimicrobial agent that is found extensively in natural aquatic environments. Enzyme-catalyzed oxidative coupling reactions (ECOCRs) can be used to remove TCS in aqueous solution, but there is limited information available to indicate how metal cations (MCs) and natural organic matter (NOM) influence the environmental fate of TCS during laccase-mediated ECOCRs. In this study, we demonstrated that the naturally occurring laccase from Pleurotus ostreatus was effective in removing TCS during ECOCRs, and the oligomerization of TCS was identified as the dominant reaction pathway by high-resolution mass spectrometry (HRMS). The growth inhibition studies of green algae (Chlamydomonas reinhardtii and Scenedesmus obliquus) proved that laccase-mediated ECOCRs could effectively reduce the toxicity of TCS. The presence of dissolved MCs (Mn²⁺, Al³⁺, Ca²⁺, Cu²⁺, and Fe²⁺ ions) influenced the removal and transformation of TCS via different mechanisms. Additionally, the transformation of TCS in systems with NOM derived from humic acid (HA) was hindered, and the apparent pseudo first-order kinetics rate constants (k) for TCS decreased as the HA concentration increased, which likely corresponded to the combined effect of both noncovalent (sorption) and covalent binding between TCS and humic molecules. Our results provide a novel insight into the fate and transformation of TCS by laccase-mediated ECOCRs in natural aquatic environments in the presence of MCs and NOM.
Afficher plus [+] Moins [-]Oxidative enzymatic response of white-rot fungi to single-walled carbon nanotubes Texte intégral
2014
Berry, Timothy D. | Filley, Timothy R. | Blanchette, R. A. (Robert A.)
Although carbon nanomaterials such as single-walled carbon nanotubes (SWCNT) are becoming increasingly prevalent in manufacturing, there is little knowledge on the environmental fate of these materials. Environmental degradation of SWCNT is hindered by their highly condensed aromatic structure as well as the size and aspect ratio, which prevents intracellular degradation and limits microbial decomposition to extracellular processes such as those catalyzed by oxidative enzymes. This study investigates the peroxidase and laccase enzymatic response of the saprotrophic white-rot fungi Trametes versicolor and Phlebia tremellosa when exposed to SWCNTs of different purity and surface chemistry under different growth conditions. Both unpurified, metal catalyst-rich SWCNT and purified, carboxylated SWCNTs promoted significant changes in the oxidative enzyme activity of the fungi while pristine SWCNT did not. These results suggest that functionalization of purified SWCNT is essential to up regulate enzymes that may be capable of decomposing CNT in the environment.
Afficher plus [+] Moins [-]