Affiner votre recherche
Résultats 1-10 de 33
The effects of the insecticide lambda-Cyhalothrin on the earthworm Eisenia fetida under experimental conditions of tropical and temperate regions
2011
García, Marcos | Scheffczyk, Adam | Garcia, Terezinha | Römbke, Jörg
Plant Protection Products can affect soil organisms and thus might have negative impacts on soil functions. Little research has been performed on their impact on tropical soils. Therefore, the effects of the insecticide lambda-Cyhalothrin on earthworms were evaluated in acute and chronic laboratory tests modified for tropical conditions, i.e. at selected temperatures (20 and 28°C) and with two strains (temperate and tropical) of the compost worm Eisenia fetida. The insecticide was spiked in two natural soils, in OECD artificial soil and a newly developed tropical artificial soil. The effects of lambda-Cyhalothrin did rarely vary in the same soil at tropical (LC50: 68.5–229mg a.i./kg dry weight (DW); EC50: 54.2–60.2mg a.i./kg DW) and temperate (LC50: 99.8–140mg a.i./kg DW; EC50: 37.4–44.5mg a.i./kg DW) temperatures. In tests with tropical soils and high temperature, effect values differed by up to a factor of ten.
Afficher plus [+] Moins [-]Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids
2010
Zhao, Meirong | Chen, Fang | Wang, Cui | Zhang, Quan | Gan, Jianying | Liu, Weiping
The increasing release of chiral chemicals into the environment dictates attention to a better understanding of enantioselectivity in their human and ecotoxicological effects. Although enantioselectivity has been considered in many recent studies, there is little effort for discerning the connection between different processes, and as such, our current knowledge about chiral contaminants is rather scattered and incoherent. In this study, we simultaneously evaluated enantioselectivity of two chiral pesticides, lambda-cyhalothrin (LCT) and (Z)-cis-bifenthrin (cis-BF), in immunotoxicity to macrophage cells (RAW264.7), and endocrine disruption activity in human breast carcinoma cell line MCF-7. Analysis of cell proliferation, cell viability, apoptosis, and receptor gene expression showed significant differences between the enantiomers of LCT or cis-BF in estrogenic potential and immunocytotoxicity. The selectivity in these effects consistently followed the same direction, with (−)-LCT or 1S-cis-BF displaying a greater activity than its counterpart. The consistency was attributed to interplaying mechanisms in the closely interacting immune and endocrine systems. The underlying interplays suggest that other chiral xenobiotics may also show a directional enantioselectivity in immunotoxicity and endocrine toxicity. Given that many biological processes are inter-related, enantioselectivity may follow specific patterns that can be revealed via integrative assessments as demonstrated in this study.
Afficher plus [+] Moins [-]Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland
2009
Moore, M.T. | Cooper, C.M. | Smith, S. Jr | Cullum, R.F. | Knight, S.S. | Locke, M.A. | Bennett, E.R.
Constructed wetlands are a suggested best management practice to help mitigate agricultural runoff before entering receiving aquatic ecosystems. A constructed wetland system (180 m x 30 m), comprising a sediment retention basin and two treatment cells, was used to determine the fate and transport of simulated runoff containing the pyrethroid insecticides lambda-cyhalothrin and cyfluthrin, as well as suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results showed 49 and 76% of the study's measured lambda-cyhalothrin and cyfluthrin masses were associated with vegetation, respectively. Based on conservative effects concentrations for invertebrates and regression analyses of maximum observed wetland aqueous concentrations, a wetland length of 215 m x 30 m width would be required to adequately mitigate 1% pesticide runoff from a 14 ha contributing area. Results of this experiment can be used to model future design specifications for constructed wetland mitigation of pyrethroid insecticides. A wetland length of 215 m x 30 m mitigated pyrethroid runoff from a 14 ha field.
Afficher plus [+] Moins [-]Sublethal insecticide exposure of an herbivore alters the response of its predator
2019
Müller, Thorben | Gesing, Matthias Alexander | Segeler, Markus | Muller, Caroline
Sublethal insecticide exposure poses risks for many non-target organisms and is a challenge for successful implementation of integrated pest management (IPM) programs. Next to detrimental effects of short-term insecticide exposure on fitness-related traits of organisms, also properties such as chemical signaling traits can be altered, which mediate intra- and interspecific communication. We investigated the effects of different durations of larval sublethal exposure to the pyrethroid lambda-cyhalothrin on performance traits of larvae and adults of the herbivorous mustard leaf beetle, Phaedon cochleariae. Moreover, by applying a direct contact and olfactometer bioassays, we determined the reaction of a generalist predator, the ant Myrmica rubra, towards insecticide-exposed and unexposed herbivore larvae and their secretions. Already short-term sublethal insecticide exposure of a few days caused a prolonged larval development and a reduced adult body mass of males. These effects may result from an insecticide-induced reduction in energy reserves. Furthermore, ants responded more frequently to insecticide-exposed than to unexposed larvae of P. cochleariae and their secretions. This increased responsiveness of ants towards insecticide-exposed larvae may be due to an insecticide-induced change in synthesis of chrysomelidial and epichrysomelidial, the dominant compounds of the larval secretion, which act defensive against various generalist predators. In conclusion, the results highlight that short-term insecticide exposure can impair the fitness of an herbivorous species due to both direct toxic effects and an increased responsiveness of predators. Consequently, exposure of single non-target species can have consequences for ecological communities in both natural habitats and IPM programs.
Afficher plus [+] Moins [-]Stereoselective degradation and thyroid endocrine disruption of lambda-cyhalothrin in lizards (Eremias argus) following oral exposure
2018
Chang, Jing | Hao, Weiyu | Xu, Yuanyuan | Xu, Peng | Li, Wei | Li, Jianzhong | Wang, Huili
The disturbance of the thyroid system and elimination of chiral pyrethroid pesticides with respect to enantioselectivity in reptiles have so far received limited attention by research. In this study, bioaccumulation, thyroid gland lesions, thyroid hormone levels, and hypothalamus-pituitary-thyroid axis-related gene expression in male Eremias argus were investigated after three weeks oral administration of lambda-cyhalothrin (LCT) enantiomers. In the lizard liver, the concentration of LCT was negatively correlated with the metabolite-3-phenoxybenzoic acid (PBA) level during 21 days of exposure. (+)-LCT exposure induced a higher thyroid follicular epithelium height than (−)-LCT exposure. The thyroxine levels were increased in both treated groups while only (+)-LCT exposure induced a significant change in the triiodothyronine (T3) level. In addition, the expressions of hypothalamus-pituitary-thyroid axis-related genes including thyroid hormone receptors (trs), deiodinases (dios), uridinediphosphate glucuronosyltransferase (udp), and sulfotransferase (sult) were up-regulated after exposure to the two enantiomers. (+)-LCT treatment resulted in higher expression of trs and (−)-LCT exposure led to greater stimulation of dios in the liver, which indicated PBA-induced antagonism on thyroid hormone receptors and LCT-induced disruption of thyroxine (T4) deiodination. The results suggest the (−)-LCT exposure causes higher residual level in lizard liver while induces less disruption on lizard thyroid activity than (+)-LCT.
Afficher plus [+] Moins [-]Lambda-cyhalothrin delays pubertal Leydig cell development in rats
2018
Li, Huitao | Fang, Yinghui | Ni, Chaobo | Chen, Xiuxiu | Mo, Jiaying | Lv, Yao | Chen, Yong | Chen, Xianwu | Lian, Qingquan | Ge, Ren-Shan
Lambda-cyhalothrin (LCT) is a widely used broad-spectrum pyrethroid insecticide and is expected to cause deleterious effects on the male reproductive system. However, the effects of LCT on Leydig cell development during puberty are unclear. The current study addressed these effects. Twenty-eight-day-old male Sprague Dawley rats orally received LCT (0, 0.25, 0.5 or 1 mg/kg body weight/day) for 30 days. The levels of serum testosterone, luteinizing hormone, and follicle-stimulating hormone, Leydig cell number, and its specific gene and protein expression were determined. LCT exposure lowered serum testosterone levels at doses of 0.5 and 1 mg/kg and luteinizing hormone levels at a dose of 1 mg/kg, but increased follicle-stimulating hormone levels at doses of 0.5 and 1 mg/kg. LCT lowered Star and Hsd3b1 mRNA or their protein levels at a dose of 1 mg/kg. Immature Leydig cells were purified from pubertal rats and treated with different concentrations of LCT for 24 h and medium androgen levels, Leydig cell mRNA and protein levels, the mitochondrial membrane potential (△Ψm), and the apoptotic rate of immature Leydig cells were investigated. LCT inhibited androgen production at 5 μM and downregulated Scarb1 at 0.05 μM, Hsd3b1 and Hsd11b1 at 0.5 μM, and Cyp11a1 at 5 μM. LCT also decreased △Ψm at 0.5 and 50 μM. In conclusion, LCT can influence the function of Leydig cells.
Afficher plus [+] Moins [-]Sublethal insecticide exposure affects reproduction, chemical phenotype as well as offspring development and antennae symmetry of a leaf beetle
2017
Müller, Thorben | Prosche, Alexander | Muller, Caroline
The area of agriculturally used land and following to that the use of pesticides are steadily increasing. Insecticides do not only reduce pest organisms on crops but can also affect non-target organisms when present in sublethal concentrations in the environment. We investigated the effects of an exposure to sublethal pyrethroid (lambda-cyhalothrin) concentrations, at doses 20 and 60 times lower than the LC50, respectively, on reproductive traits and adult cuticular hydrocarbon (CHC) profiles of a leaf beetle (Phaedon cochleariae Fabricius). Furthermore, we tested for effects on growth and antennae symmetry of the offspring generation that was not exposed to the insecticide. Sublethal insecticide concentrations decreased the egg number produced by the adults and the hatching rate. Moreover, the chemical phenotype (CHC profile) of adults was altered in dependence of the insecticide treatment, with sex-specific effects. In the unexposed offspring of insecticide-exposed parents, a prolonged development time and a fluctuating asymmetry of the females' antennae were detected, revealing transgenerational effects. The insecticide effects on the CHC profiles of the parental generation might have been caused by changes in CHC precursors, which were potentially induced by the insecticide treatment of the insect diet. Such altered CHC pattern may have implications for intraspecific communication, e.g., in mate choice, as well as in an interspecific way, e.g., in interactions with other arthropod species. The observed detrimental transgenerational effects might be explainable by a reduced investment in the offspring, maternal transfer or epigenetic processes. An asymmetry of the antennae may lead to defects in the reception of chemical signals. In conclusion, the results disclose that, besides detrimental (transgenerational) effects on reproduction and development, an exposure to sublethal insecticide concentrations can impair the chemical communication between individuals, with impacts on the sender (i.e., the CHC profile) and the receiver (i.e., caused by asymmetry of the antennae).
Afficher plus [+] Moins [-]Foliar application of lambda-cyhalothrin modulates root exudate profile and the rhizosphere bacteria community of dioecious Populus cathayana
2022
He, Yue | Zhu, Zuodong | Zhou, Zhenghu | Lu, Tao | Kumar, Amit | Xia, Zhichao
Dioecious plants show sexual differences in resistance traits to abiotic stresses. However, the effects of exogenous pesticide application on female and male plant growth and their associated adaptation mechanisms are unclear. Our study investigated the effects of the broad-spectrum pesticide lambda-cyhalothrin (λ-CY) on dioecious Populus cathayana growth and explored the factors through which λ-CY changed the rhizosphere bacterial community and physicochemical soil properties via sex-specific metabolomics. The sequential application of λ-CY significantly suppressed male shoot- and root biomass, with little effect on the growth of females. Females possessed a higher intrinsic chemo-diversity within their root exudates, and their levels of various metabolites (sugars, fatty acids, and small organic acids) increased after exposure to λ-CY with consequences on bacterial community composition. Maintaining high bacterial alpha diversity and recruiting specific bacterial groups slowed down the loss of rhizosphere nutrients in females. In contrast, the reduction in bacterial alpha diversity and network structure stability in males was associated with lower rhizosphere nutrient availability. Spearman's correlation analysis revealed that several bacterial groups were positively correlated with the root secretion of lipids and organic acids, suggesting that these metabolites can affect the soil bacterial groups actively involved in the nutrient pool. This study provided novel insights that root exudates and soil microbial interactions may mediate sex-specific differences in response to pesticide application.
Afficher plus [+] Moins [-]Repeated insecticide pulses increase harmful effects on stream macroinvertebrate biodiversity and function
2021
Wiberg-Larsen, Peter | Nørum, Ulrik | Rasmussen, Jes Jessen
We exposed twelve mesocosm stream channels and four instream channels to one, two, and four pulses of the insecticide lambda-cyhalothrin (0.1 μg L⁻¹) applied at two day intervals, each pulse lasting 90 min. Unexposed controls were included. We monitored macroinvertebrate taxonomic composition in the channels and in deployed leaf packs one day before and 29 days after the first exposure. Further, we measured drift in and out of the channels and leaf litter decomposition. Lambda-cyhalothrin exposures induced significantly increased drift in both experiments especially for Gammarus pulex, Amphinemura standfussi, and Leuctra spp. Macroinvertebrate taxonomic composition increasingly changed with increasing number of lambda-cyhalothrin exposures being most pronounced in the mesocosm channels. Further, leaf decomposition significantly decreased with increasing number of exposures in the mesocosm channels. Our study showed that species with predicted highest sensitivity to lambda-cyhalothrin were primary drivers of significant changes in taxonomic composition lasting for at least one month despite continuous recolonization of exposed channels from upstream parts of the natural stream and from the water inlet in the mesocosm channels. The overall results highlight the importance of sequential exposures to insecticides for understanding the full impact of insecticides on macroinvertebrates at the community level in streams.
Afficher plus [+] Moins [-]Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals
2017
Brogan, William R. | Relyea, Rick A.
Understanding the processes that regulate contaminant impacts in nature is an increasingly important challenge. For insecticides in surface waters, the ability of aquatic plants to sorb, or bind, hydrophobic compounds has been identified as a primary mechanism by which toxicity can be mitigated (i.e. the sorption-based model). However, recent research shows that submerged plants can also rapidly mitigate the toxicity of the less hydrophobic insecticide malathion via alkaline hydrolysis (i.e. the hydrolysis-based model) driven by increased water pH resulting from photosynthesis. However, it is still unknown how generalizable these mitigation mechanisms are across the wide variety of insecticides applied today, and whether any general rules can be ascertained about which types of chemicals may be mitigated by each mechanism. We quantified the degree to which the submerged plant Elodea canadensis mitigated acute (48-h) toxicity to Daphnia magna using nine commonly applied insecticides spanning three chemical classes (carbamates: aldicarb, carbaryl, carbofuran; organophosphates: malathion, diazinon, chlorpyrifos; pyrethroids: permethrin, bifenthrin, lambda-cyhalothrin). We found that insecticides possessing either high octanol-water partition coefficients (log Kow) values (i.e. pyrethroids) or high susceptibility to alkaline hydrolysis (i.e. carbamates and malathion) were all mitigated to some degree by E. canadensis, while the plant had no effect on insecticides possessing intermediate log Kow values and low susceptibility to hydrolysis (i.e. chlorpyrifos and diazinon). Our results provide the first general insights into which types of insecticides are likely to be mitigated by different mechanisms based on known chemical properties. We suggest that current models and mitigation strategies would be improved by the consideration of both mitigation models.
Afficher plus [+] Moins [-]