Affiner votre recherche
Résultats 1-2 de 2
Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish
2016
Juneidi, Ibrahim | Hayyan, Maan | Mohd Ali, Ozair
An investigation on the toxicological assessment of 10 choline chloride (ChCl)-based deep eutectic solvents (DESs) towards four fungi strains and Cyprinus carpio fish was conducted. ChCl was combined with materials from different chemical groups such as alcohols, sugars, acids and others to form DESs. The study was carried out on the individual DES components, their aqueous mixture before DES formation and their formed DESs. The agar disc diffusion method was followed to investigate their toxicity on four fungi strains selected as a model of eukaryotic microorganisms (Phanerochaete chrysosporium, Aspergillus niger, Lentinus tigrinus and Candida cylindracea). Among these DESs, ChCl:ZnCl₂ exhibited the highest inhibition zone diameter towards the tested fungi growth in vitro, followed by the acidic group (malonic acid and p-toluenesulfonic acid). Another study was conducted to test the acute toxicity and determine the lethal concentration at 50 % (LC₅₀) of the same DESs on C. carpio fish. The inhibition range and LC₅₀ of DESs were found to be different from their individual components. DESs were found to be less toxic than their mixture or individual components. The LC₅₀ of ChCl:MADES is much higher than that of ChCl:MAMᵢₓ. Moreover, the DESs acidic group showed a lower inhibition zone on fungi growth. Thus, DESs should be considered as new components with different physicochemical properties and toxicological profiles, and not merely compositions of compounds.
Afficher plus [+] Moins [-]Elemental distribution including toxic elements in edible and inedible wild growing mushrooms from South Africa
2019
Rasalanavho, Muvhango | Moodley, Roshila | Jonnalagadda, Sreekantha B.
Macro-elements (Ca, Fe, K, Mg and Na) and trace elements including some toxic (As, Be, Cd, Co, Cu, Mn, Ni, Pb, Se and Zn) were determined in edible and inedible wild-growing mushrooms (Amanita rubescens, Auricularia polytricha, Boletus edulis, Boletus mirabilis, Clavulina cristata, Helvella crispa, Lactarius deliciosus, Suillus luteus, Termitomyces microcarpus, Termitomyces reticulatus, Termitomyces clypeatus, Termitomyces umkowaanii, Amanita foetidissima, Amanita muscaria, Amanita pantherina, Aseroe rubra, Chlorophyllum molybdites, Ganoderma lucidum, Gymnopilus junonius, Hypholoma fasciculare, Lentinus villosus, Lepista caffrorum, Pycnoporus sanguineus, Panaeolus papilionaceus, Pisolithus tinctorius, Pleurotus ostreatus, Podaxis pistillaris, Russula sardonia, Scleroderma citrinum, Scleroderma michiganense). Analyses of samples were carried out using inductively coupled plasma-optical emission spectrometry. The elemental content in both edible and inedible mushrooms, in decreasing order, was found to be K >> Na > Ca > Mg > Fe > Mn > Zn > Cu > Se > Co > Ni > Be > Pb ≥ Cd > As. Our study revealed that the accumulation of metals from the soil is independent of whether mushrooms are edible or inedible as uptake is dependent on the soil quality and its environment. Edible mushroom species studied were found to be rich in Se (145–836% towards the RDA) with B. edulis being rich in it, C. cristata in Cu, S. luteus in Fe and H. crispa in Zn, and all contained low concentrations of toxic metals making them suitable for human consumption.
Afficher plus [+] Moins [-]