Affiner votre recherche
Résultats 1-4 de 4
Column tests for evaluation of the enzymatic biodegradation capacity of hydrocarbons (C10–C50) contaminated soil
2021
Kadri, Tayssir | Robert, Thomas | Rouissi, Tarek | Sebastian, Joseph | Magdouli, Sara | Brar, Satinder Kaur | Martel, Richard | Lauzon, Jean-Marc
Though many studies pertaining to soil bioremediation have been performed to study the microbial kinetics in shake flasks, the process efficiency in column tests is seldom. In the present study, soil columns tests were carried out to study the biodegradation of soil contaminated with a high concentration of diesel (≈19.5 g/kg) petroleum hydrocarbons expressed as C₁₀–C₅₀. Experiments were done with crude enzymatic cocktail produced by the hydrocarbonoclastic bacterium, Alcanivorax borkumensis. A. borkumensis was grown on a media with 3% (v/v) motor oil as the sole carbon and energy source. The effects of the enzyme concentration, treatment time and oxidant on the bioremediation efficiency of C₁₀–C₅₀ were investigated. A batch test was also carried out in parallel to investigate the stability of the enzymes and the effect of the biosurfactants on the desorption and the bioconversion of C₁₀–C₅₀. Batch tests indicated that the biosurfactants significantly affected the desorption and alkane hydroxylase and lipase enzymes, maintained their catalytic activity during the 20-day test, with a half-life of 7.44 days and 8.84 days, respectively. The crude enzyme cocktail, with 40 U/mL of lipase and 10 U/mL of alkane hydroxylase, showed the highest conversion of 57.36% after 12 weeks of treatment with a degradation rate of 0.0218 day⁻¹. The results show that the soil column tests can be used to optimize operating conditions for hydrocarbon degradation and to assess the performance of the overall bioremediation process.
Afficher plus [+] Moins [-]Biodegradation of polyester polyurethane by Aspergillus tubingensis
2017
Khan, Sehroon | Nadir, Sadia | Shah, Zia Ullah | Shah, Aamer Ali | Karunarathna, Samantha C. | Xu, Jianchu | Khān, Āfsar | Munir, Shahzad | Hasan, Fariha
The xenobiotic nature and lack of degradability of polymeric materials has resulted in vast levels of environmental pollution and numerous health hazards. Different strategies have been developed and still more research is being in progress to reduce the impact of these polymeric materials. This work aimed to isolate and characterize polyester polyurethane (PU) degrading fungi from the soil of a general city waste disposal site in Islamabad, Pakistan. A novel PU degrading fungus was isolated from soil and identified as Aspergillus tubingensis on the basis of colony morphology, macro- and micro-morphology, molecular and phylogenetic analyses. The PU degrading ability of the fungus was tested in three different ways in the presence of 2% glucose: (a) on SDA agar plate, (b) in liquid MSM, and (c) after burial in soil. Our results indicated that this strain of A. tubingensis was capable of degrading PU. Using scanning electron microscopy (SEM), we were able to visually confirm that the mycelium of A. tubingensis colonized the PU material, causing surface degradation and scarring. The formation or breakage of chemical bonds during the biodegradation process of PU was confirmed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The biodegradation of PU was higher when plate culture method was employed, followed by the liquid culture method and soil burial technique. Notably, after two months in liquid medium, the PU film was totally degraded into smaller pieces. Based on a comprehensive literature search, it can be stated that this is the first report showing A. tubingensis capable of degrading PU. This work provides insight into the role of A. tubingensis towards solving the dilemma of PU wastes through biodegradation.
Afficher plus [+] Moins [-]Evaluation of Lipase from an Indigenous Isolated Bacillus Strain for Biodiesel Production
2023
Neha, Nisha Sethi, Sangita Yadav, Subhash Chander, Sweta Kumari, Ankur and Asha Gupta
Lipases are utilized in biodiesel production utilizing various types of substrates. The use of lipase in bioenergy production aims to reduce energy crises and environmental pollution. Lipase-producing indigenous bacteria Bacillus licheniformis (Accession no. OP56979) and Bacillus rugosus (Accession no. OP56980) were isolated from various oil-contaminated sites. The isolated potential lipolytic bacteria were screened for maximum lipase production. Then, the bacteria showing the highest lipolytic activity were subjected to identification using the 16s rRNA technique while other isolated were identified biochemically. Lipase [LipBL-WII(c)] from Bacillus licheniformis having the highest lipolytic activity expressed various characteristics. Characterization of crude LipBL-WII(c) expressed that it showed stability in a wide range of pH (4 to 10) with optimum lipolytic activity observed at pH 8. It was then found to be active at a temperature range from 20°C to 80°C with optimal at 50°C. Lipase activity was also stimulated in metal ions such as Ca+1, Mg2+, and Zn2+ the most. Furthermore, LipBL-WII(c) retained lipolytic activity in the presence of various organic solvents and surfactants. The kinetic parameters (Km and Vmax) for LipBL-WII(c) were ascertained using Lineweaver- Burk plot. LipBL-WII(c) showed a potential for biodiesel production using olive oil as a source. Lipase gave 84% yield of biodiesel production from olive oil. Thus, it could be employed as a potential candidate for green biodiesel production using oil sources.
Afficher plus [+] Moins [-]Lipase production from a novel thermo-tolerant and extreme acidophile Bacillus pumilus using palm oil as the substrate and treatment of palm oil-containing wastewater
2014
Saranya, P. | Sukanya Kumari, H. | Prasad Rao, B. | Sekaran, G.
The thermo-tolerant and extreme acidophilic microorganism Bacillus pumilus was isolated from the soil collected from a commercial edible-oil extraction industry. Optimisation of conditions for the lipase production was conducted using response surface methodology. The optimum conditions for obtaining the maximum activity (1,100 U/mL) of extremely acidic thermostable lipase were fermentation time, 96 h; pH, 1; temperature, 50 °C; and concentration of palm oil, 50 g/L. After purification, a 7.1-fold purity of lipase with specific activity of 5,173 U/mg protein was obtained. The molecular weight of the thermo-tolerant acidophilic lipase (TAL) was 55 kDa. The predominant amino acid in the TAL was glycine. The functional groups of lipase were determined by Fourier transform infrared spectroscopy. TAL exhibited enhanced activity (114 %) with dimethyl sulphoxide (20 %, v/v), and it showed a moderate activity with methanol, hexane and benzene. The optimum conditions for the treatment of palm oil in wastewater using the TAL were found to be time, 3 h; pH, 1; temperature, 50 °C with pseudo second-order kinetic constant of 1.88 × 10⁻³ L mol⁻¹ min⁻¹. The Michaelis–Menten enzyme kinetic model and the nonlinear kinetic model were evaluated for the TAL. TAL established hydrolysis efficiency of 96 % for palm oil in wastewater at 50 °C.
Afficher plus [+] Moins [-]