Affiner votre recherche
Résultats 1-10 de 181
Natural stress vs. anthropogenic pressure. How do they affect benthic communities? Texte intégral
2022
Puente Trueba, Maria Araceli | García Gómez, Andrés | De los Ríos Gutiérrez, Ana | Galván Arbeiza, Cristina | Universidad de Cantabria
This study compares the role of salinity regime and chemical pollution in the biodiversity patterns of estuarine benthic communities. A specific field survey allowed us to explain the response of organisms to mixtures of chemicals and the effects of salinity regime and extreme events on the richness and composition of macroinvertebrate assemblages. The patterns obtained provide further evidence that both stress sources are key factors in macroinvertebrate communities' organization, but the type and magnitude of the changes differ. The abundance of opportunistic species increased according to the pollution gradient, while this indicator was less sensitive to salinity descriptors. In contrast, biotic indices responded to the salinity regime but did not show a consistent pattern in response to pollutants. Multivariate analyses reflected both environmental stress gradients. Overall, the results suggested that diversity increased in the habitats where the frequency and duration of extreme drought and flood events were low. | This research was part of the PREVEMAR project (BIA2015-67298-R) and ECOTOPO project (RTI2018-096409-B-I00) funded by the Spanish Ministry of Science and Innovation through the National Plan for Scientific Research. The authors want to specially thank the Port Authority of Santander for the information provided.
Afficher plus [+] Moins [-]Effects of intense agricultural practices on heterotrophic processes in streams Texte intégral
2009
Piscart, Christophe | Genoel, Romuald | Dolédec, Sylvain | Chauvet, Eric | Marmonier, Pierre | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire d'Ecologie des Hydrosystèmes Fluviaux (EHF) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS) | Hydrobiologie et Ecologie Souterraines ; Laboratoire d'Ecologie des Hydrosystèmes Fluviaux (EHF) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Équipe 1 - Biodiversité des Écosystèmes Lotiques (LEHNA BEL) ; Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire Ecologie Fonctionnelle et Environnement (LEFE) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) | Ecologie, Evolution, Ecosystèmes Souterrains ; Laboratoire d'Ecologie des Hydrosystèmes Fluviaux (EHF) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ANR-06-BDIV-0007,INBIOPROCESS,Linking biodiversity and ecological processes in the subsurface / surface water interfaces for sustainable ground water management(2006)
International audience
Afficher plus [+] Moins [-]Identifying and classifying macroinvertebrate indicator signature traits and ecological preferences along urban pollution gradient in the Niger Delta Texte intégral
2021
Edegbene, Augustine O. | Odume, Oghenekaro N. | Arimoro, Francis O. | Keke, Unique N.
Urbanisation of riverine landscape is an increasing threat to the functionality of river ecosystems. In this study, we identify and classify macroinvertebrates indicator signature traits and ecological preferences.We hypothesised that urban pollution would differentially influence the distribution of macroinvertebrate traits and ecological preferences along a gradient of water quality deterioration. Hence, we identified and classified potential biological indicators traits and ecological preferences that were deemed tolerant of or sensitive to urban pollution gradient in the Niger Delta region of Nigeria. Physico-chemical variables (water temperature, depth, flow velocity, dissolved oxygen, biochemical oxygen demand, electrical conductivity (EC), nitrate, phosphate), and macroinvertebrates were collected from 2008 to 2012 seasonally during the wet and dry seasons once in a month in 11 stations in eight river systems. The results based on RLQ, fourth-corner and Kruskal-Wallis analyses indicate that traits/ecological preferences such as tegumental/cutaneous respiration, cased/tubed body armouring, a preference for silty water, bivoltinism, burrowing and a high tolerance for oxygen depletion, were statistically significantly associated with the heavily impacted stations. These traits were positively correlated with physico-chemical variables such as EC, nitrate and phosphate indicative of urban pollution. On the other hand, traits/ecological preferences such as permanent attachment, crawling, swimming, univoltinism and a moderate sensitivity to oxygen depletion were associated with the least impacted stations and were negatively correlated with physico-chemical variables indicative of urban pollution. Overall, the observed differential responses of traits and ecological preferences to urban pollution along a gradient of water quality impairment suggest that traits and ecological preferences can serve as useful biological indicators and thus supports the growing evidence of the utility of the trait-based approach.
Afficher plus [+] Moins [-]Integrating multiple lines of evidence to assess freshwater ecosystem health in a tropical river basin Texte intégral
2021
Chancay, Juseth E. | Lucas-Solis, Oscar | Alvear-S, Daniela | Martínez-R, Dayana | Mena, Gisella | Zurita, Bryan | Carrasco-S, Luis | Carrillo, Henry | Segarra, Víctor | Naranjo, Elizabeth | Coronel, Brian | Espinosa, Rodrigo | Cabrera, Marcela | Capparelli, Mariana V. | Celi, Jorge E.
Degradation of freshwater ecosystems by uncontrolled human activities is a growing concern in the tropics. In this regard, we aimed at testing an integrative framework based on the IFEQ index to assess freshwater ecosystem health of river basins impacted by intense livestock and agricultural activities, using the Muchacho River Basin (MRB) as a case study. The IFEQ combine multiple lines of evidence such as riverine hydromorphological analysis (LOE 1), physicochemical characterization using ions and pesticides (LOE 2), aquatic macroinvertebrate monitoring (LOE 3), and phytotoxicological essays with L. sativa (LOE 4). Overall, results showed an important reduction in streamflow and an elevated increase in ion concentrations along the MRB caused by deforestation and erosion linked to agricultural and livestock activities. Impacts of the high ion concentrations were evidenced in macroinvertebrate communities as pollution-tolerant families, associated with high conductivity levels, represented 92 % of the total abundance. Pollution produced by organophosphate pesticides (OPPs) was critical in the whole MRB, showing levels that exceeded 270-fold maximum threshold for malathion and 30-fold for parathion, the latter banned in Ecuador. OPPs concentrations were related to low germination percentages of Lactuca sativa in sediment phytotoxicity tests. The IEFQ index ranged from 44.4 to 25.6, indicating that freshwater ecosystem conditions were “bad” at the headwaters of the MRB and “critical” along the lowest reaches. Our results show strong evidence that intense agricultural and livestock activities generated significant impacts on the aquatic ecosystem of the MRB. This integrative approach better explains the cumulative effects of human impacts, and should be replicated in other basins with similar conditions to help decision-makers and concerned inhabitants generate adequate policies and strategies to mitigate the degradation of freshwater ecosystems.
Afficher plus [+] Moins [-]Water column nutrient concentrations are related to excretion by benthic invertebrates in Lake Taihu, China Texte intégral
2020
Peng, Kai | Qin, Boqiang | Cai, Yongjiu | Gong, Zhijun | Jeppesen, Erik
Internal release of nutrients is an important contributor to the nutrient dynamics in shallow eutrophic lakes. Zoobenthic organisms may contribute to this release by excreting nutrients to the overlaying water. Based on experiments and using results from previous experimental studies as well as field monitoring density data from 2007 to 2017, we calculated the annual and seasonal nutrient excretions of the two most common macroinvertebrates (Corbicula fluminea and Limnodrilus hoffmeisteri) in Lake Taihu, China. We compared these rates with the concentrations of NH₄–N, total nitrogen (TN), PO₄–P and total phosphorus (TP) in the lake water as well as with previous results of release rates from undisturbed sediments collected in the lake. The spatial distribution of nutrient excretion by the two invertebrate species varied markedly among sites and years. Regression analyses revealed significant relationships between total nutrient excretions by these two species and the concentrations of NH₄–N, TN, PO₄–P and TP in the lake, but with seasonal differences. The relationship was overall strongest in winter, followed by spring, and weakest in summer and autumn. The flux of NH₄–N and PO₄–P released by the two macroinvertebrate species were equivalent to as much as 50% and 66%, respectively, of the sediment release recorded in lab experiments under undisturbed conditions; however, the percentages would be somewhat lower under field conditions where the sediment is subjected to frequent wind-induced resuspension and fish disturbance, enhancing the release rates. The release declined during the study period due to a reduction in the density of macroinvertebrates, perhaps indicating increasing stocking of fish since 2007. Our results indicate that benthic invertebrates are important contributor to the internal loading in shallow eutrophic lakes.
Afficher plus [+] Moins [-]Environmental DNA metabarcoding reveals estuarine benthic community response to nutrient enrichment – Evidence from an in-situ experiment Texte intégral
2020
Clark, D.E. | Pilditch, C.A. | Pearman, J.K. | Ellis, J.I. | Zaiko, A.
Nutrient loading is a major threat to estuaries and coastal environments worldwide, therefore, it is critical that we have good monitoring tools to detect early signs of degradation in these ecologically important and vulnerable ecosystems. Traditionally, bottom-dwelling macroinvertebrates have been used for ecological health assessment but recent advances in environmental genomics mean we can now characterize less visible forms of biodiversity, offering a more holistic view of the ecosystem and potentially providing early warning signals of disturbance. We carried out a manipulative nutrient enrichment experiment (0, 150 and 600 g N fertilizer m⁻²) in two estuaries in New Zealand to assess the effects of nutrient loading on benthic communities. After seven months of enrichment, environmental DNA (eDNA) metabarcoding was used to examine the response of eukaryotic (18S rRNA), diatom only (rbcL) and bacterial (16S rRNA) communities. Multivariate analyses demonstrated changes in eukaryotic, diatom and bacterial communities in response to nutrient enrichment at both sites, despite differing environmental conditions. These patterns aligned with changes in macrofaunal communities identified using traditional morphological techniques, confirming concordance between disturbance indicators detected by eDNA and current monitoring approaches. Clear shifts in eukaryotic and bacterial indicator taxa were seen in response to nutrient loading while changes in diatom only communities were more subtle. Community changes were discernible between 0 and 150 g N m⁻² treatments, suggesting that estuary health assessment tools could be developed to detect early signs of degradation. Increasing variation in community structure associated with nutrient loading could also be used as an indicator of stress or approaching tipping points. This work represents a first step towards the development of molecular-based estuary monitoring tools, which could provide a more holistic and standardized approach to ecosystem health assessment with faster turn-around times and lower costs.
Afficher plus [+] Moins [-]Derivation of sediment Hg quality standards based on ecological assessment in river basins Texte intégral
2019
Méndez-Fernández, Leire | Casado-Martínez, Carmen | Martínez-Madrid, Maite | Moreno-Ocio, Iñigo | Costas, Noemí | Pardo, Isabel | Rodríguez, Pilar
The Environmental Quality Standards (EQS) directive was an important improvement of long-term water quality monitoring at the European level, leading to the use of sediments and biota as relevant matrices for assessing priority substances under the European Water Framework directive. Currently, commonly accepted sediment EQS for Hg are missing in Europe. In this study we present a new, tiered approach to deriving sediment quality standards for Hg: the derivation of Predicted No-Effect Concentration (PNEC) from data in the literature, followed by adjusting values at regional scale, using ecological field data (macroinvertebrate community assessment) and field sediment ecotoxicity bioassays. The limited set of effect data available for Hg spiked-sediment ecotoxicity tests has resulted in unreliable PNEC values for sediment quality assessment. Field reference sites (n = 40) where the macroinvertebrate community status was assessed as High or Good were used to define the ecological background and threshold levels in sediments in northern Spain. Sediment QS developed in other areas were not suitable for specific basins in our study area, since they were within the range of our Hg background levels. Temporary sediment Quality Standards (QS) for Hg were developed for the Nalón River basin (where several mining districts occur), using field effect-based approaches such as sediment ecotoxicity data from Tubifex tubifex chronic bioassays and ecological assessment of macroinvertebrate communities. A proposal for Hg quality assessment in freshwater sediments of northern Spain is made based on ecologically relevant QS values, providing benchmark values for No-Effect and Effect Hg sediment concentrations.
Afficher plus [+] Moins [-]Timber harvest alters mercury bioaccumulation and food web structure in headwater streams Texte intégral
2019
Willacker, James J. | Eagles-Smith, Collin A. | Kowalski, Brandon M. | Danehy, Robert J. | Jackson, Allyson K. | Adams, Evan M. | Evers, David C. | Eckley, Chris S. | Tate, Michael T. | Krabbenhoft, David P.
Timber harvest has many effects on aquatic ecosystems, including changes in hydrological, biogeochemical, and ecological processes that can influence mercury (Hg) cycling. Although timber harvest's influence on aqueous Hg transformation and transport are well studied, the effects on Hg bioaccumulation are not. We evaluated Hg bioaccumulation, biomagnification, and food web structure in 10 paired catchments that were either clear-cut in their entirety, clear-cut except for an 8-m wide riparian buffer, or left unharvested. Average mercury concentrations in aquatic biota from clear-cut catchments were 50% higher than in reference catchments and 165% higher than in catchments with a riparian buffer. Mercury concentrations in aquatic invertebrates and salamanders were not correlated with aqueous THg or MeHg concentrations, but rather treatment effects appeared to correspond with differences in the utilization of terrestrial and aquatic basal resources in the stream food webs. Carbon and nitrogen isotope data suggest that a diminished shredder niche in the clear-cut catchments contributed to lower basal resource diversity compared with the reference of buffered treatments, and that elevated Hg concentrations in the clear-cut catchments reflect an increased reliance on aquatic resources in clear-cut catchments. In contrast, catchments with riparian buffers had higher basal resource diversity than the reference catchments, indicative of more balanced utilization of terrestrial and aquatic resources. Further, following timber harvest THg concentrations in riparian songbirds were elevated, suggesting an influence of timber harvest on Hg export to riparian food webs. These data, coupled with comparisons of individual feeding guilds, indicate that changes in organic matter sources and associated effects on stream food web structure are important mechanisms by which timber harvest modifies Hg bioaccumulation in headwater streams and riparian consumers.
Afficher plus [+] Moins [-]The evil within? Systemic fungicide application in trees enhances litter quality for an aquatic decomposer-detritivore system Texte intégral
2018
Newton, Kymberly | Zubrod, Jochen P. | Englert, Dominic | Lüderwald, Simon | Schell, Theresa | Baudy, Patrick | Konschak, Marco | Feckler, Alexander | Schulz, Ralf | Bundschuh, Mirco
Waterborne exposure towards fungicides is known to trigger negative effects in aquatic leaf-associated microbial decomposers and leaf-shredding macroinvertebrates. We expected similar effects when these organisms use leaf material from terrestrial plants that were treated with systemic fungicides as a food source since the fungicides may remain within the leaves when entering aquatic systems. To test this hypothesis, we treated black alder (Alnus glutinosa) trees with a tap water control or a systemic fungicide mixture (azoxystrobin, cyprodinil, quinoxyfen, and tebuconazole) at two worst-case application rates. Leaves of these trees were used in an experiment targeting alterations in two functions provided by leaf-associated microorganisms, namely the decomposition and conditioning of leaf material. The latter was addressed via the food-choice response of the amphipod shredder Gammarus fossarum. During a second experiment, the potential impact of long-term consumption of leaves from trees treated with systemic fungicides on G. fossarum was assessed. Systemic fungicide treatment altered the resource quality of the leaf material resulting in trends of increased fungal spore production and an altered community composition of leaf-associated fungi. These changes in turn caused a significant preference of Gammarus for microbially conditioned leaves that had received the highest fungicide treatment over control leaves. This higher food quality ultimately resulted in a higher gammarid growth (up to 300% increase) during the long-term feeding assay. Although the underlying mechanisms still need to be addressed, the present study demonstrates a positive indirect response in aquatic organisms due to systemic pesticide application in a terrestrial system. As the effects from the introduction of plant material treated with systemic fungicides strongly differ from those mediated via other pathways (e.g., waterborne exposure), our study provides a novel perspective of fungicide-triggered effects in aquatic detritus-based food webs.
Afficher plus [+] Moins [-]Total mercury concentrations in liver and muscle of European whitefish (Coregonus lavaretus (L.)) in a subarctic lake - Assessing the factors driving year-round variation Texte intégral
2017
Keva, Ossi | Hayden, Brian | Harrod, Chris | Kahilainen, Kimmo K.
Subarctic lakes are characterised by extreme seasonal variation in light and temperature which influences growth, maturation, condition and resource use of fishes. However, our understanding of how seasonal changes affect mercury concentrations of fishes is limited. We conducted a year-round study (3 ice-covered months, 3 open-water months) with open-water inter-annual aspect (3 years: samples from August/September), focusing on total mercury (THg) concentrations and ecological characteristics of a common freshwater fish, European whitefish (Coregonus lavaretus (L.)) from a subarctic lake. We measured THg concentrations from tissues with fast (liver, n = 164) and moderate (muscle, n = 225) turnover rates, providing information on THg dynamics over different temporal scales. In both tissues, lipid-corrected THg concentrations were highest in winter (liver: 1.70 ± 0.88 μg/g, muscle: 0.24 ± 0.05 μg/g) and lowest in summer (liver: 0.87 ± 0.72 μg/g, muscle: 0.19 ± 0.04 μg/g). THg concentrations increased in winter following the summer-autumn dietary shift to pelagic zooplankton and starvation after spawning. Whitefish THg concentrations decreased towards summer, and were associated with consumption of benthic macroinvertebrates and subsequent growth dilution. Mercury bioaccumulated in both tissues with age, both showing the strongest regression slopes in winter and lowest in summer. THg concentrations in liver and muscle tissue were correlated throughout the year, however the correlation was lowest in summer, indicating high metabolism during somatic growing season in summer and growth dilution. Multiple linear regression models explained 50% and 55% of the THg variation in liver and muscle both models dominated by seasonally-variable factors i.e. sexual maturity, δ13C, and condition factor. Seasonally varying bioaccumulation slopes and the higher level of intra-annual variation (21%) in whitefish THg concentration in muscle than the inter-annual accumulation (8%) highlight the importance of including seasonal factors in future THg studies.
Afficher plus [+] Moins [-]