Affiner votre recherche
Résultats 1-10 de 28
Linking valve closure behavior and sodium transport mechanism in freshwater clam Corbicula fluminea in response to copper Texte intégral
2007
Liao, C.M. | Lin, C.M. | Jou, L.J. | Chiang, K.C.
The purpose of this study is to develop a mechanistic model to describe a conceptually new “flux-biological response” approach based on biotic ligand model (BLM) and Michaelis-Menten (M-M) kinetics to allow the linkage between valve closure behavior and sodium (Na) transport mechanism in freshwater clam Corbicula fluminea in response to waterborne copper (Cu). We test the proposed model against published data regarding Na uptake kinetics in rainbow trout and Na uptake profile in C. fluminea, confirming that the predictive model is robust. Here, we show that the predicted M-M maximum Cu internalization flux in C. fluminea is 0.369 μmol g-1 h-1 with a half-saturation affinity constant of 7.87 x 10-3 μM. Dynamics of Na uptake and valve closure daily rhythm driven by external Cu can also be predicted simultaneously. We suggest that this “Na transport-valve closure behavior” approach might provide the basis of a future design of biomonitoring tool. A new flux-biological response model can link valve closure and sodium transport mechanisms in freshwater clam in response to copper.
Afficher plus [+] Moins [-]Physiological responses of Alternanthera philoxeroides (Mart.) Griseb leaves to cadmium stress Texte intégral
2007
Ding, B. | Shi, G. | Xu, Y. | Hu, J. | Xu, Q.
Aquatic macrophytes were found to be the potential scavengers of heavy metals from aquatic environment. In this study, several physiological responses of Alternanthera philoxeroides (Mart.) Griseb leaves to elevated concentrations of cadmium (up to 10 mM) were investigated. It was found that A. philoxeroides was able to accumulate cadmium in its leaves. The pigment contents decreased with the increase of the Cd concentrations. The Cd could induce rise of the activity of peroxidase (POD) at lower concentration (<5 mM), however, when the concentration of Cd rose up to 10 mM, the POD activity declined. The changes of superoxide dismutase (SOD) and Catalase (CAT) activities were exactly opposite to that of POD. In the leaves of Cd-treated fronds, the amounts of three polypeptides with apparent molecular weights 80, 39 and 28 kDa, respectively, were became visible in SDS-PAGE. The nature of these polypeptides remains to be determined. Cd modified a number of physiological processes and particularly chlorophyll degradation.
Afficher plus [+] Moins [-]Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity Texte intégral
2007
Bidar, G. | Garcon, G. | Pruvot, C. | Dewaele, D. | Cazier, F. | Douay, F. | Shirali, P.
The use of a vegetation cover for the management of heavy metal contaminated soils needs prior investigations on the plant species the best sustainable. In this work, behaviors of Trifolium repens and Lolium perenne, growing in a metal-polluted field located near a closed lead smelter, were investigated through Cd, Pb and Zn-plant metal concentrations and their phytotoxicity. In these plant species, metals were preferentially accumulated in roots than in shoots, as follow: Cd > Zn > Pb. Plant exposure to such metals induced oxidative stress in the considered organs as revealed by the variations in malondialdehyde levels and superoxide dismutase activities. These oxidative changes were closely related to metal levels, plant species and organs. Accordingly, L. perenne seemed to be more affected by metal-induced oxidative stress than T. repens. Taken together, these findings allow us to conclude that both the plant species could be suitable for the phytomanagement of metal-polluted soils. Usefulness of Trifolium repens and Lolium perenne for the phytomanagement of heavy metal-contaminated soils.
Afficher plus [+] Moins [-]Dynamics of trace metals in organisms and ecosystems: Prediction of metal bioconcentration in different organisms and estimation of exposure risks Texte intégral
2007
Fränzle, S. | Markert, B. | Wünschmann, S.
Metal ions interact with biological materials and their decomposition products by ligation (coordination complex-formation with certain moieties containing O, N, S, etc.). The extent of this interaction depends on the identities of both ligand and metal ion and can be described by some equation derived from perturbation theory. Uptake of metal ions - including highly toxic ones - from soils is controlled by a competition between root exudate components and soil organic matter (SOM) for the ions. SOM consists of a variety of potential ligands which evolve during humification towards more efficient binding (retention) of metals such as Cu, Ni, Cr but also of toxicants like U, Cd. The actual way of interaction can be inferred from stoichiometry of the involved compounds and the C/N ratio in the soil, providing predictions as to which metals will be most efficiently shuttled into green plants or fungi, respectively. The latter, selective process is crucial for closing nutrient cycles and sensitively depends on C/N ratio and the extent of “forcing” by onfalling leaf or needle litter. Therefore, analytical data on the soil can be used to predict possible risks of exposition to toxic metals also for human consumption of plant parts. Degradation, amounts and evolution of N-free vs. nitrogenous SOM control transfer of essential and toxic metals from soil into plants, to be estimated from coordination (bio-)chemistry.
Afficher plus [+] Moins [-]Short-term effects of dimethoate on metabolic responses in Chrysolina pardalina (Chrysomelidae) feeding on Berkheya coddii (Asteraceae), a hyper-accumulator of nickel Texte intégral
2007
Augustyniak, M. | Migula, P. | Mesjasz-Przybylowicz, J. | Tarnawska, M. | Nakonieczny, M. | Babczynska, A. | Przybylowicz, W. | Augustyniak, M.G.
Berkheya coddii Roessler (Asteraceae) is a hyper-accumulator of nickel, which can be used in phytomining and phytoremediation. Chrysolina pardalina Fabricius (Chrysomelidae) is a phytophagous leaf beetle, which may be useful in controlling population levels of B. coddii after it has been introduced into a new habitat. The aim of this study was to investigate the response of C. pardalina to topical application of dimethoate. Data recorded included the activity of acetylcholinesterase (AChE), the concentration of glutathione (GSH), and the activity of selected enzymes connected with GSH metabolism. Assays were carried out several times during the first 24 h after exposure to dimethoate. At the dosages used in this study, dimethoate was not as toxic as expected. AChE activity was significantly decreased 14 and 24 h after application. GST activity was significantly decreased 24 h after application. GSTPx activity was significantly decreased 2, 14 and 24 h after application. GR activity was significantly increased 4 h after application. GSH concentration was significantly increased 24 h after application. Long-term exposure to high levels of nickel may have caused adaptive changes in the enzymes that enable C. pardalina to deal with other stressors, including organophosphate pesticides. Long-term exposure to high levels of nickel may have caused adaptive changes in the enzymes that enable Chrysolina pardalina to deal with other stressors, including organophosphate pesticides.
Afficher plus [+] Moins [-]Integrated effects of air pollution and climate change on forests: A northern hemisphere perspective Texte intégral
2007
Bytnerowicz, A. | Omasa, K. | Paoletti, E.
Many air pollutants and greenhouse gases have common sources, contribute to radiative balance, interact in the atmosphere, and affect ecosystems. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects may significantly differ from a sum of separate effects. We review the links between air pollution and climate change and their interactive effects on northern hemisphere forests. A simultaneous addressing of the air pollution and climate change effects on forests may result in more effective research, management and monitoring as well as better integration of local, national and global environmental policies. Simultaneous addressing air pollution and climate change effects on forests is an opportunity for capturing synergies in future research and monitoring.
Afficher plus [+] Moins [-]Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare) Texte intégral
2007
Lock, K. | Schamphelaere, K.A.C de | Becaus, S. | Criel, P. | Eeckhout, H van | Janssen, C.R.
A Biotic Ligand Model was developed predicting the effect of cobalt on root growth of barley (Hordeum vulgare) in nutrient solutions. The extent to which Ca2+, Mg2+, Na+, K+ ions and pH independently affect cobalt toxicity to barley was studied. With increasing activities of Mg2+, and to a lesser extent also K+, the 4-d EC50Co2+ increased linearly, while Ca2+, Na+ and H+ activities did not affect Co2+ toxicity. Stability constants for the binding of Co2+, Mg2+ and K+ to the biotic ligand were obtained: log KCoBL = 5.14, log KMgBL = 3.86 and log KKBL = 2.50. Limited validation of the model with one standard artificial soil and one standard field soil showed that the 4-d EC50Co2+ could only be predicted within a factor of four from the observed values, indicating further refinement of the BLM is needed. Biotic Ligand Models are not only a useful tool to assess metal toxicity in aquatic systems but can also be used for terrestrial plants.
Afficher plus [+] Moins [-]Plant senescence: A mechanism for nutrient release in temperate agricultural wetlands Texte intégral
2007
Kröger, R. | Holland, M.M. | Moore, M.T. | Cooper, C.M.
The beneficial uptake of nutrients by wetland plants is countered to some extent by nutrient release back into the aquatic environment due to vegetative die-back. This current study examined whether Leersia oryzoides, a common wetland plant, exhibits luxury uptake of nutrients from simulated farm runoff. The study also tested whether with subsequent decomposition, these nutrients are released back into the water column. When exposed to elevated (>2 mg/L N and P) runoff, L. oryzoides assimilated significantly higher concentrations of nitrogen (p < 0.001) and phosphorus (p < 0.001) in above-ground biomass as compared to non-enriched treatments (<0.05 mg/L N and P). Subsequently, senescence of enriched above-ground biomass yielded significantly higher concentrations of phosphorus (2.19 ± 0.84 mg P/L). Using L. oryzoides as our model, this study demonstrates nitrogen and phosphorus sequestration during the growing season and release of phosphorus in the winter. Release of sequestered nutrients during plant senescence.
Afficher plus [+] Moins [-]Leaf extracellular ascorbate in relation to O3 tolerance of two soybean cultivars Texte intégral
2007
Cheng, F.Y. | Burkey, K.O. | Robinson, J.M. | Booker, F.L.
Soybean [Glycine max (L.) Merr.] cultivars Essex and Forrest that exhibit differences in ozone (O3) sensitivity were used in greenhouse experiments to investigate the role of leaf extracellular antioxidants in O3 injury responses. Charcoal-filtered air and elevated O3 conditions were used to assess genetic, leaf age, and O3 effects. In both cultivars, the extracellular ascorbate pool consisted of 80e98% dehydroascorbic acid, the oxidized form of ascorbic acid (AA) that is not an antioxidant. For all combinations of genotype and O3 treatments, extracellular AA levels were low (1e30 nmol g 1 FW) and represented 3e30% of the total antioxidant capacity. Total extracellular antioxidant capacity was twofold greater in Essex compared with Forrest, consistent with greater O3 tolerance of Essex. The results suggest that extracellular antioxidant metabolites in addition to ascorbate contribute to detoxification of O3 in soybean leaves and possibly affect plant sensitivity to O3 injury.
Afficher plus [+] Moins [-]Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil Texte intégral
2007
Fayiga, A.O. | Ma, L.Q. | Zhou, Q.
This study examined the effects of heavy metals and plant arsenic uptake on soil arsenic distribution. Chemical fractionation of an arsenic-contaminated soil spiked with 50 or 200 mg kg-1 Ni, Zn, Cd or Pb was performed before and after growing the arsenic hyperaccumulator Pteris vittata L for 8 weeks using NH4Cl (water-soluble plus exchangeable, WE-As), NH4F (Al-As), NaOH (Fe-As), and H2SO4 (Ca-As). Arsenic in the soil was present primarily as the recalcitrant forms with Ca-As being the dominant fraction (45%). Arsenic taken up by P. vittata was from all fractions though Ca-As contributed the most (51-71% reduction). After 8 weeks of plant growth, the Al-As and Fe-As fractions were significantly (p < 0.01) greater in the metal-spiked soils than the control, with changes in the WE-As fraction being significantly (p = 0.007) correlated with plant arsenic removal. The plant's ability to solubilize soil arsenic from recalcitrant fractions may have enhanced its ability to hyperaccumulate arsenic. Arsenic taken up by P. vittata was from all fractions with most from the Ca-fraction.
Afficher plus [+] Moins [-]