Affiner votre recherche
Résultats 1-10 de 137
The arbuscular mycorrhizal fungus Rhizophagus irregularis uses the copper exporting ATPase RiCRD1 as a major strategy for copper detoxification Texte intégral
2023
Gómez-Gallego, Tamara | Molina-Luzón, Ma, Jesús | Conéjéro, Genevieve | Berthomieu, Pierre | Ferrol, Nuria | Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain | Institut des Sciences des Plantes de Montpellier (IPSIM) ; Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) | CSIC, Estn Expt Zaidin, Dept Microbiol Suelo & Sistemas Simbiot, Granada, Spain
Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with most land plants. AM fungi regulate plant copper (Cu) acquisition both in Cu deficient and polluted soils. Here, we report characterization of RiCRD1, a Rhizophagus irregularis gene putatively encoding a Cu transporting ATPase. Based on its sequence analysis, RiCRD1 was identified as a plasma membrane Cu (+) efflux protein of the P(1B1)-ATPase subfamily. As revealed by heterologous complementation assays in yeast, RiCRD1 encodes a functional protein capable of conferring increased tolerance against Cu. In the extraradical mycelium, RiCRD1 expression was highly up-regulated in response to high concentrations of Cu in the medium. Comparison of the expression patterns of different players of metal tolerance in R. irregularis under high Cu levels suggests that this fungus could mainly use a metal efflux based-strategy to cope with Cu toxicity. RiCRD1 was also expressed in the intraradical fungal structures and, more specifically, in the arbuscules, which suggests a role for RiCRD1 in Cu release from the fungus to the symbiotic interface. Overall, our results show that RiCRD1 encodes a protein which could have a pivotal dual role in Cu homeostasis in R. irregularis, playing a role in Cu detoxification in the extraradical mycelium and in Cu transfer to the apoplast of the symbiotic interface in the arbuscules.
Afficher plus [+] Moins [-]The arbuscular mycorrhizal fungus Rhizophagus irregularis uses the copper exporting ATPase RiCRD1 as a major strategy for copper detoxification Texte intégral
2024
Gómez-Gallego, Tamara | Molina-Luzón, Ma, Jesús | Conéjèro, Geneviève | Berthomieu, Pierre | Ferrol, Nuria | Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] (CSIC) | Institut des Sciences des Plantes de Montpellier (IPSIM) ; Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) | grant PID2021-1255210B–I00 funded by MCIN/AEI/10.13039/501100011033 | “ERDF A way of making Europe”, by the “European Union” | ANR-10-INBS-0004,France-BioImaging,Développment d'une infrastructure française distribuée coordonnée(2010)
International audience | Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with most land plants. AM fungi regulate plant copper (Cu) acquisition both in Cu deficient and polluted soils. Here, we report characterization of RiCRD1, a Rhizophagus irregularis gene putatively encoding a Cu transporting ATPase. Based on its sequence analysis, RiCRD1 was identified as a plasma membrane Cu (+) efflux protein of the P(1B1)-ATPase subfamily. As revealed by heterologous complementation assays in yeast, RiCRD1 encodes a functional protein capable of conferring increased tolerance against Cu. In the extraradical mycelium, RiCRD1 expression was highly up-regulated in response to high concentrations of Cu in the medium. Comparison of the expression patterns of different players of metal tolerance in R. irregularis under high Cu levels suggests that this fungus could mainly use a metal efflux based-strategy to cope with Cu toxicity. RiCRD1 was also expressed in the intraradical fungal structures and, more specifically, in the arbuscules, which suggests a role for RiCRD1 in Cu release from the fungus to the symbiotic interface. Overall, our results show that RiCRD1 encodes a protein which could have a pivotal dual role in Cu homeostasis in R. irregularis, playing a role in Cu detoxification in the extraradical mycelium and in Cu transfer to the apoplast of the symbiotic interface in the arbuscules.
Afficher plus [+] Moins [-]Global characterization of dose-dependent effects of cadmium in clam Ruditapes philippinarum Texte intégral
2021
Zhan, Junfei | Wang, Shuang | Li, Fei | Ji, Chenglong | Wu, Huifeng
Cadmium (Cd) is being frequently detected in marine organisms. However, dose-dependent effects of Cd challenged unraveling the toxicological mechanisms of Cd to marine organisms and developing biomarkers. Here, the dose-dependent effects of Cd on clams Ruditapes philippinarum following exposure to 5 doses of Cd (3, 9, 27, 81, 243 μg/L) were investigated using benchmark dose (BMD) method. By model fitting, calculation of BMD values was performed on transcriptomic profiles, metals concentrations, and antioxidant indices. Cd exposure induced not only significant Cd accumulation in clams, but also marked alterations of essential metals such as Ca, Cu, Zn, Mn, and Fe. Gene regulation posed little influence on essential metal homeostasis, indicated by poor enrichment of differentially expressed genes (DEGs) associated with metal binding and metal transport in lower concentrations of Cd-treated groups. BMD analysis on biological processes and pathways showed that peptide cross-linking was the most sensitive biological process to Cd exposure, followed by focal adhesion, ubiquitin mediated proteolysis, and apoptosis. Occurrence of apoptosis was also confirmed by TUENL-positive staining in gills and hepatopancreas of clams treated with Cd. Furthermore, many DEGs, such as transglutaminases (TGs), metallothionein (MT), STEAP2-like and laccase, which presented linear or monotonic curves and relatively low BMD values, were potentially preferable biomarkers in clams to Cd. Overall, BMD analysis on transcriptomic profiles, metals concentrations and biochemical endpoints unraveled the sensitiveness of key events in response to Cd treatments, which provided new insights in exploring the toxicological mechanisms of Cd in clams as well as biomarker selection.
Afficher plus [+] Moins [-]Detoxification of ionic liquids using glutathione, cysteine, and NADH: Toxicity evaluation by Tetrahymena pyriformis Texte intégral
2021
Cui, Yin Hua | Shi, Qing Shan | Zhang, Dan Dan | Wang, Lingling | Feng, Jin | Chen, Yi-Wen | Xie, Xiao Bao
Ionic liquids (ILs), also known as green solvents, are widely acknowledged in several fields, such as chemical separation, synthesis, and electrochemistry, owing to their excellent physiochemical properties. However, their poor biodegradability may lead to environmental and health risks, posing a severe threat to humans, thus requiring further research. In this study, the biotoxicities of the imidazolium-based ILs were evaluated in Tetrahymena pyriformis. Moreover, IL detoxification was investigated by addition of glutathione (GSH), cysteine, and nicotinamide adenine dinucleotide (NADH). Reactive oxygen species (ROS) initiated by different IL types caused damage to Tetrahymena, while glutathione, cysteine, and NADH eliminated ROS, achieving the detoxification purposes. Detoxification results showed that NADH exhibited the best detoxification ability, followed by glutathione and cysteine. Finally, RT-PCR results suggested that metallothionein might have participated in IL detoxification.
Afficher plus [+] Moins [-]Immunotoxic mechanisms of cigarette smoke and heat-not-burn tobacco vapor on Jurkat T cell functions Texte intégral
2021
Scharf, Pablo | da Rocha, Gustavo H.O. | Sandri, Silvana | Heluany, Cintia S. | Pedreira Filho, Walter R. | Farsky, Sandra H.P.
Cigarette smoke (CS) affects immune functions, leading to severe outcomes in smokers. Robust evidence addresses the immunotoxic effects of combustible tobacco products. As heat-not-burn tobacco products (HNBT) vaporize lower levels of combustible products, we here compared the effects of cigarette smoke (CS) and HNBT vapor on Jurkat T cells. Cells were exposed to air, conventional cigarettes or heatsticks of HNBT for 30 min and were stimulated or not with phorbol myristate acetate (PMA). Cell viability, proliferation, reactive oxygen species (ROS) production, 8-OHdG, MAP-kinases and nuclear factor κB (NFκB) activation and metallothionein expression (MTs) were assessed by flow cytometry; nitric oxide (NO) and cytokine levels were measured by Griess reaction and ELISA, respectively. Levels of metals in the exposure chambers were quantified by inductively coupled plasma mass spectrometry. MT expressions were quantified by immunohistochemistry in the lungs and liver of C57Bl/6 mice exposed to CS, HNBT or air (1 h, twice a day for five days: via inhalation). While both CS and HBNT exposures increased cell death, CS led to a higher number of necrotic cells, increased the production of ROS, NO, inflammatory cytokines and MTs when compared to HNBT-exposed cells, and led to a higher expression of MTs in mice. CS released higher amounts of metals. CS and HNBT exposures decreased PMA-induced interleukin-2 (IL-2) secretion and impaired Jurkat proliferation, effects also seen in cells exposed to nicotine. Although HNBT vapor does not activate T cells as CS does, exposure to both HNBT and CS suppressed proliferation and IL-2 release, a pivotal cytokine involved with T cell proliferation and tolerance, and this effect may be related to nicotine content in both products.
Afficher plus [+] Moins [-]Long-term landfill leachate exposure modulates antioxidant responses and causes cyto-genotoxic effects in Eisenia andrei earthworms Texte intégral
2021
Sales Junior, Sidney Fernandes | Costa Amaral, Isabele Campos | Mannarino, Camille Ferreira | Hauser-Davis, Rachel Ann | Correia, Fábio Veríssimo | Saggioro, Enrico Mendes
It is estimated that approximately 0.4% of the total leachate produced in a landfill is destined for treatment plants, while the rest can reach the soil and groundwater. In this context, this study aimed to perform leachate toxicity evaluations through immune system cytotoxic assessments, genotoxic (comet assay) appraisals and antioxidant system (superoxide dismutase - SOD; catalase - CAT, glutathione-S-transferase - GST; reduced glutathione - GSH and metallothionein - MT) evaluations in Eisenia andrei earthworms exposed to a Brazilian leachate for 77 days. The leachate sample contained high organic matter (COD - 10,630 mg L⁻¹) and ammoniacal nitrogen (2398 mg L⁻¹), as well as several metals, including Ca, Cr, Fe, Mg, Ni and Zn. Leachate exposure resulted in SOD activity alterations and increased CAT activity and MT levels. Decreased GST activity and GSH levels were also observed. Antioxidant system alterations due to leachate exposure led to increased malondialdehyde levels as a result of lipid peroxidation after the 77 day-exposure. An inflammatory process was also observed in exposed earthworms, evidenced by increased amoebocyte density, and DNA damage was also noted. This study demonstrates for the first time that sublethal effect assessments in leachate-exposed earthworms comprise an important tool for solid waste management.
Afficher plus [+] Moins [-]Ecotoxicity of trace elements to chicken GALLUS gallus domesticus exposed to a gradient of polymetallic-polluted sites Texte intégral
2020
Kribi-Boukhris, Sameh EL. | Boughattas, Iteb | Zitouni, Nesrine | Helaoui, Sondes | Sappin-Didier, Valérie | Coriou, Cécile | Bussiere, Sylvie | Banni, Mohamed
Ecotoxicity of trace elements to chicken GALLUS gallus domesticus exposed to a gradient of polymetallic-polluted sites Texte intégral
2020
Kribi-Boukhris, Sameh EL. | Boughattas, Iteb | Zitouni, Nesrine | Helaoui, Sondes | Sappin-Didier, Valérie | Coriou, Cécile | Bussiere, Sylvie | Banni, Mohamed
Mining activity may cause heavy metal accumulation, which threatens human and animal health by their long-term persistence in the environment. This study aims to assess the impact of polymetallic pollution on chicken (Gallus domesticus) from old lead mining sites in northeast of Tunisia: Jebel Ressas (JR). Samples of soil and chickens were collected from five sites being ranked along a gradient of heavy metal contamination. Heavy metal loads were evaluated in soil samples and in chicken liver and kidney. Biochemical evaluation of oxidative stress parameters termed as Catalase (CAT), Glutathione-S-Transferase (GST), and Malondialdehydes (MDA) accumulation was monitored. Metallothionein protein level was assessed as a specific response to heavy metals. DNA alteration was achieved using MNi frequency in the investigated tissues. Finally, the evaluation of gene expression levels of CAT, GST, mt1, mt4, P53, bcl2, caspase3 and DNA-ligase was performed. Our data showed the highest loads of Cd, Cu, Zn and Pb in tissues of animals from site 3, being more pronounced in kidney. Biochemical data suggested a significant increase in antioxidant enzymes activities in all sites respect to control except in site 3 were CAT and GST were inhibited. DNA alteration was observed in all tissues being very pronounced in animals from site 3. Overall, transcriptomic data showed that genes involved in apoptosis were up-regulated in animals exposed to the most contaminated soils. Our data suggest that chicken and selected biomarkers offer a suitable model for biomonitoring assessment of heavy metals transfer through the food web in mining sites. Finally, the obtained results of heavy metals accumulation and related alterations should be carefully considered in view of the controversial relationship between distribution and toxicology of contaminants in exposed organisms.
Afficher plus [+] Moins [-]Biochemical profile and gene expression of Clarias gariepinus as a signature of heavy metal stress Texte intégral
2020
Swaleh, Sadiya Binte | Banday, Umarah Zahoor | Asadi, Moneeb-Al | Usmani, Nazura
Heavy metals have been found in increasing concentrations in the aquatic environment. Fishes exposed to such metals have altered gene expression, serum profiles, tissue histology and bioindices that serve as overall health biomarkers. The heavy metals (Ni, Cd, and Cr) accumulated in water and fish tissues, were beyond the permissible limits defined by the Central Pollution Control Board/World Health Organization. Metallothionein (MT) and glutathione peroxidase (GPX) genes expression patterns highlighted the metal-specific exposure of fish. An increased fold change of genes against beta-actin serves as a potential feature for toxicity. Metal toxicity is also reflected by an increased level of digestive enzymes (amylase and lipase) in the serum and alterations in values of reproductive hormones (11-Ketotestosterone and progesterone). Total serum bilirubin attribute to the liver and biliary tract disease in fishes. Histopathological studies show cellular degeneration, breakage, vacuolization signifying the chronic stress.
Afficher plus [+] Moins [-]Toxicity of copper hydroxide nanoparticles, bulk copper hydroxide, and ionic copper to alfalfa plants: A spectroscopic and gene expression study Texte intégral
2018
Cota-Ruiz, Keni | Hernández-Viezcas, José A. | Varela-Ramírez, Armando | Valdés, Carolina | Núñez-Gastélum, José A. | Martínez-Martínez, Alejandro | Delgado-Rios, Marcos | Peralta-Videa, Jose R. | Gardea-Torresdey, Jorge L.
Bulk Cu compounds such as Cu(OH)₂ are extensively used as pesticides in agriculture. Recent investigations suggest that Cu-based nanomaterials can replace bulk materials reducing the environmental impacts of Cu. In this study, stress responses of alfalfa (Medicago sativa L.) seedlings to Cu(OH)₂ nanoparticle or compounds were evaluated. Seeds were immersed in suspension/solutions of a Cu(OH)₂ nanoform, bulk Cu(OH)₂, CuSO₄, and Cu(NO₃)₂ at 25 and 75 mg/L. Six days later, the germination, seedling growth, and the physiological and biochemical responses of sprouts were evaluated. All Cu treatments significantly reduced root elongation (average = 63%). The ionic compounds at 25 and 75 mg/L caused a reduction in all elements analyzed (Ca, K, Mg, P, Zn, and Mn), excepting for S, Fe and Mo. The bulk-Cu(OH)₂ treatment reduced K (48%) and P (52%) at 75 mg/L, but increased Zn at 25 (18%) and 75 (21%) mg/L. The nano-Cu(OH)₂ reduced K (46%) and P (48%) at 75 mg/L, and also P (37%) at 25 mg/L, compared with control. Confocal microscopy images showed that all Cu compounds, at 75 mg/L, significantly reduced nitric oxide, concurring with the reduction in root growth. Nano Cu(OH)₂ at 25 mg/L upregulated the expression of the Cu/Zn superoxide dismutase gene (1.92-fold), while ionic treatments at 75 mg/L upregulated (∼10-fold) metallothionein (MT) transcripts. Results demonstrated that nano and bulk Cu(OH)₂ compounds caused less physiological impairments in comparison to the ionic ones in alfalfa seedlings.
Afficher plus [+] Moins [-]Significance of metallothioneins in differential cadmium accumulation kinetics between two marine fish species Texte intégral
2018
Le Croizier, Gaël | Lacroix, Camille | Artigaud, Sébastien | Le Floch, Stéphane | Raffray, Jean | Penicaud, Virginie | Coquillé, Valérie | Autier, Julien | Rouget, Marie-Laure | Le Bayon, Nicolas | Lae, R. (Raymond) | Tito De Morais, Luis
Significance of metallothioneins in differential cadmium accumulation kinetics between two marine fish species Texte intégral
2018
Le Croizier, Gaël | Lacroix, Camille | Artigaud, Sébastien | Le Floch, Stéphane | Raffray, Jean | Penicaud, Virginie | Coquillé, Valérie | Autier, Julien | Rouget, Marie-Laure | Le Bayon, Nicolas | Lae, R. (Raymond) | Tito De Morais, Luis
Impacted marine environments lead to metal accumulation in edible marine fish, ultimately impairing human health. Nevertheless, metal accumulation is highly variable among marine fish species. In addition to ecological features, differences in bioaccumulation can be attributed to species-related physiological processes, which were investigated in two marine fish present in the Canary Current Large Marine Ecosystem (CCLME), where natural and anthropogenic metal exposure occurs. The European sea bass Dicentrarchus labrax and Senegalese sole Solea senegalensis were exposed for two months to two environmentally realistic dietary cadmium (Cd) doses before a depuration period. Organotropism (i.e., Cd repartition between organs) was studied in two storage compartments (the liver and muscle) and in an excretion vector (bile). To better understand the importance of physiological factors, the significance of hepatic metallothionein (MT) concentrations in accumulation and elimination kinetics in the two species was explored. Accumulation was faster in the sea bass muscle and liver, as inferred by earlier Cd increase and a higher accumulation rate. The elimination efficiency was also higher in the sea bass liver compared to sole, as highlighted by greater biliary excretion. In the liver, no induction of MT synthesis was attributed to metal exposure, challenging the relevance of using MT concentration as a biomarker of metal contamination. However, the basal MT pools were always greater in the liver of sea bass than in sole. This species-specific characteristic might have enhanced Cd biliary elimination and relocation to other organs such as muscle through the formation of more Cd/MT complexes. Thus, MT basal concentrations seem to play a key role in the variability observed in terms of metal concentrations in marine fish species.
Afficher plus [+] Moins [-]Significance of metallothioneins in differential cadmium accumulation kinetics between two marine fish species Texte intégral
2018
Le Croizier, Gael | Lacroix, Camille | Artigaud, Sebastien | Le Floch, Stephane | Raffray, Jean | Penicaud, Virginie | Coquille, Valerie | Autier, Julien | Rouget, Marie-laure | Le Bayon, Nicolas | Lae, Raymond | De Morais, Luis Tito
Impacted marine environments lead to metal accumulation in edible marine fish, ultimately impairing human health. Nevertheless, metal accumulation is highly variable among marine fish species. In addition to ecological features, differences in bioaccumulation can be attributed to species-related physiological processes, which were investigated in two marine fish present in the Canary Current Large Marine Ecosystem (CCLME), where natural and anthropogenic metal exposure occurs. The European sea bass Dicentrarchus labrax and Senegalese sole Solea senegalensis were exposed for two months to two environmentally realistic dietary cadmium (Cd) doses before a depuration period. Organotropism (i.e., Cd repartition between organs) was studied in two storage compartments (the liver and muscle) and in an excretion vector (bile). To better understand the importance of physiological factors, the significance of hepatic metallothionein (MT) concentrations in accumulation and elimination kinetics in the two species was explored. Accumulation was faster in the sea bass muscle and liver, as inferred by earlier Cd increase and a higher accumulation rate. The elimination efficiency was also higher in the sea bass liver compared to sole, as highlighted by greater biliary excretion. In the liver, no induction of MT synthesis was attributed to metal exposure, challenging the relevance of using MT concentration as a biomarker of metal contamination. However, the basal MT pools were always greater in the liver of sea bass than in sole. This species-specific characteristic might have enhanced Cd biliary elimination and relocation to other organs such as muscle through the formation of more Cd/MT complexes. Thus, MT basal concentrations seem to play a key role in the variability observed in terms of metal concentrations in marine fish species.
Afficher plus [+] Moins [-]