Affiner votre recherche
Résultats 1-5 de 5
The global warming potential of straw-return can be reduced by application of straw-decomposing microbial inoculants and biochar in rice-wheat production systems
2019
Ma, Yuchun | Liu, De Li | Schwenke, Graeme | Yang, Bo
Straw-return methods that neither negatively impact yield nor bring environmental risk are ideal patterns. To attain this goal, it is necessary to conduct field observation to evaluate the environmental influence of different straw-return methods. Therefore, we conducted a 2-year field study in 2015–2017 to investigate the emissions of methane (CH₄) and nitrous oxide (N₂O) and the changes in topsoil (0–20 cm) organic carbon (SOC) density in a typical Chinese rice-wheat rotation in the Eastern China. These measurements allowed a complete greenhouse gas accounting (net GWP and GHGI) of five treatments including: FP (no straw, plus fertilizer), FS (wheat straw plus fertilizer), FB (straw-derived biochar plus fertilizer), FSDI (wheat straw with straw-decomposing microbial inoculants plus fertilizer) and CK (control: no straw, no fertilizer). Average annual SOC sequestration rates were estimated to be 0.20, 0.97, 1.97 and 1.87 t C ha⁻¹ yr⁻¹ (0–20 cm) for the FP, FS, FB and FSDI treatments respectively. Relative to the FP treatment, the FS and FSDI treatments increased CH₄ emissions by 12.4 and 17.9% respectively, but decreased N₂O emissions by 19.1 and 26.6%. Conversely, the FB treatment decreased CH₄ emission by 7.2% and increased N₂O emission by 10.9% compared to FP. FB increased grain yield, but FS and FSDI did not. Compared to the net GWP (11.6 t CO₂-eq ha⁻¹ yr⁻¹) and GHGI (1.20 kg CO₂-eq kg⁻¹ grain) of FP, the FS, FB and FSDI treatments reduced net GWP by 12.6, 59.9 and 34.6% and GHGI by 10.5, 65.8 and 37.7% respectively. In rice-wheat systems of eastern China, the environmentally beneficial effects of returning wheat straw can be greatly enhanced by application of straw-decomposing microbial inoculants or by applying straw-derived biochar.
Afficher plus [+] Moins [-]Measurement of methane emission into environment during natural gas purging process
2018
Farzaneh-Gord, Mahmood | Pahlevan-Zadeh, Mohammad Sadegh | Ebrahimi-Moghadam, Amir | Rastgar, Saied
The main purpose of this study is to develop accurate equation for predicting methane emission into the environment during natural gas (NG) purging process. The process is carried out regularly in NG pressure reducing stations. For this purpose, a numerical investigation has been carried out to simulate NG exit flow from a purging valve during opening time. The simulation has been carried out using Ansys-Fluent code. To make the solution and results more similar to actual scenario, the valve is continuously opened in a transient turbulent flow. Initial condition, is assumed steady flow in the pipeline. Three-dimensional modeling is used to simulate the valve and connected pipe, and all of the effective parameters including, inlet pressure, pipeline diameter, valve diameter and purging process time (including the time which valve needs to get completely opened and also purging time) are investigated. For simplicity and also as the main component of NG is methane, methane is considered as working fluid (a real compressible gas). The numerical results show that discharging gas velocity is reached to a supersonic velocity at outlet section of valve. As the highest expected exit velocity is sonic velocity, the supersonic velocity is a surprised result. Looking at the streamlines show that this is due to a convergent-divergent nozzle occurrence (due to re-circulation zone near junction) in discharging pipe. Also results show that discharged mass flow rate has liner relation with pipeline pressure, second degree relation with valve diameter and has fourth-degree relation with valve to pipeline diameter ratio. To make the results more applicable for NG industry, two correlations have been developed for calculating the amount of released gas in steady state and unsteady state condition. Unsteady state correlation is valid for valve opening time and steady state correlation could be used while the valve is completely opened.
Afficher plus [+] Moins [-]Eutrophic levels and algae growth increase emissions of methane and volatile sulfur compounds from lakes
2022
Wang, Jing | Wei, Zhi-Peng | Chu, Yi-Xuan | Tian, Guangming | He, Ruo
Eutrophic lakes are hot spots of CH₄ and volatile sulfur compound (VSC) emissions, especially during algal blooms and decay. However, the response of CH₄ and VSC emissions to lake eutrophication and algae growth as well as the underlying mechanisms remain unclear. In this study, the emissions of CH₄ and VSCs from four regions of Lake Taihu with different eutrophic levels were investigated in four months (i.e., March, May, August and December). The CH₄ emissions ranged from 20.4 to 126.9 mg m⁻² d⁻¹ in the investigated sites and increased with eutrophic levels and temperature. H₂S and CS₂ were the dominant volatile sulfur compounds (VSCs) emitted from the lake. The CH₄ oxidation potential of water ranged from 2.1 to 14.9 μg h⁻¹ L⁻¹, which had positive correlations with trophic level index and the environmental variables except for the NH₄⁺-N concentration. Eutrophic levels could increase the abundances of bacteria and methanotrophs in lake water. α-Proteobacteria methanotroph Methylocystis was more abundant than γ-Proteobacteria methanotrophs in March and May, while the latter was more abundant in August and November. The relative abundance of Cyanobacteria, including Microcystis, A. granulata var. angustissima and Cyanobium had significantly positive correlations with temperature, turbidity, SO₄²⁻-S, and total sulfur. Partial least squares path modelling revealed that the algal growth could promote VSC emissions, which had a positive correlation with CH₄ oxidation potential, likely due to the positive correlation between the CH₄ and VSC emissions from lakes. These findings indicate that water eutrophication and algae growth could increase the emissions of CH₄ and VSCs from lakes. Controlling algae growth might be an effective way to mitigate the emissions of CH₄ and VSCs from freshwater lakes.
Afficher plus [+] Moins [-]Neonicotinoids stimulate H2-limited methane emission in Periplaneta americana through the regulation of gut bacterium community
2021
Bao, Haibo | Gao, Haoli | Zhang, Jianhua | Lü, Haiyan | Yu, Na | Shao, Xusheng | Zhang, Yixi | Jin, Wei | Li, Shuqing | Xu, Xiaoyong | Tian, Jiahua | Xu, Zhiping | Li, Zhong | Liu, Zewen
Methane emitted by insects is considered to be an important source of atmospheric methane. Here we report the stimulation of methane emission in the cockroach Periplaneta americana and termite Coptotermes chaohuensis, insects with abundant methanogens, by neonicotinoids, insecticides widely used to control insect pests. Cycloxaprid (CYC) and imidacloprid (IMI) caused foregut expansion in P. americana, and increased the methane emission. Antibiotics mostly eliminated the effects. In P. americana guts, hydrogen levels increased and pH values decreased, which could be significantly explained by the gut bacterium community change. The proportion of several bacterium genera increased in guts following CYC treatment, and two genera from four could generate hydrogen. Hydrogen is a central intermediate in methanogenesis. All increased methanogens in both foregut and hindgut used hydrogen as electron donor to produce methane. Besides, the up-regulation of mcrA, encoding the enzyme for the final step of methanogenesis suggested the enhanced methane production ability in present methanogens. In the termite, hydrogen levels in gut and methane emission also significantly increased after neonicotinoid treatment, which was similar to the results in P. americana. In summary, neonicotinoids changed bacterium community in P. americana gut to generate more hydrogen, which then stimulated gut methanogens to produce and emit more methane. The finding raised a new concern over neonicotinoid applications, and might be a potential environmental risk associated with atmospheric methane.
Afficher plus [+] Moins [-]Quinolone antibiotics enhance denitrifying anaerobic methane oxidation in Wetland sediments: Counterintuitive results
2022
Zhao, Yuewen | Jiang, Hongchen | Wang, Xiuyan | Liu, Changli | Yang, Yuqi
Denitrifying anaerobic methane oxidation (DAMO) plays an important role in the element cycle of wetlands. In recent years, the content of antibiotics in wetlands has gradually increased due to human activities. However, the impact of antibiotics on the ecological function of DAMO remains unclear. Here we studied the influence of three high-content quinolone antibiotics (QNs) on DAMO in the sediments of the Baiyangdian Wetland. The results show that QNs can significantly promote the potential DAMO rates. Moreover, the enhancement of potential DAMO rates is positively correlated with the dosage of QNs. This promotion effect of QNs on nitrate-DAMO can be attributed to the hormesis phenomenon or their inhibition of substrate competitors. As antibacterial agents, QNs inhibit nitrite-DAMO conducted by bacteria, but greatly promote nitrate-DAMO conducted by archaea. These results suggest that the short-term effect of QNs on DAMO in wetlands is promotion rather than inhibition.
Afficher plus [+] Moins [-]