Affiner votre recherche
Résultats 1-10 de 60
Transformation of lamotrigine by white-rot fungus Pleurotus ostreatus
2019
Chefetz, Benny | Marom, Rotem | Salton, Orit | Oliferovsky, Mariana | Mordehay, Vered | Ben-Ari, Julius | Hadar, Y. (Yitzhak)
One of the most persistent pharmaceutical compounds commonly found in treated wastewater is lamotrigine (LTG). It has also been detected in soils and crops irrigated with treated wastewater. Here we focused on the ability of the white-rot edible mushroom Pleurotus ostreatus to remove and transform LTG in liquid cultures. At concentrations of environmental relevance (1 and 10 μg L−1) LTG was almost completely removed from the culture medium within 20 days. To elucidate the mechanism of LTG removal and transformation, we applied a physiological-based approach using inhibitors and a competing agent. These experiments were conducted at a higher concentration for metabolites detection. Based on identification of sulfur-containing metabolites and LTG N2-oxide and the effect of specific inhibitors, cytochrome P450 oxidation is suggested as one of the reaction mechanisms leading to LTG transformation. The variety and number of transformation products (i.e., conjugates) found in the current study were larger than reported in mammals. Moreover, known conjugates with glucuronide, glutathione, or cysteine/glycine, were not found in our system. Since the majority of the identified transformation products were conjugates of LTG, this study highlights the persistence of LTG as an organic pollutant in ecosystems exposed to wastewater.
Afficher plus [+] Moins [-]Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils
2011
Rieder, Stephan R. | Brunner, Ivano | Horvat, Milena | Jacobs, Anna | Frey, Beat
Accumulation of total and methyl-Hg by mushrooms and earthworms was studied in thirty-four natural forest soils strongly varying in soil physico-chemical characteristics. Tissue Hg concentrations of both receptors did hardly correlate with Hg concentrations in soil. Both total and methyl-Hg concentrations in tissues were species-specific and dependent on the ecological groups of receptor. Methyl-Hg was low accounting for less than 5 and 8% of total Hg in tissues of mushrooms and earthworms, respectively, but with four times higher concentrations in earthworms than mushrooms. Total Hg concentrations in mushrooms averaged 0.96 mg Hg kg⁻¹ dw whereas litter decomposing mushrooms showed highest total Hg and methyl-Hg concentrations. Earthworms contained similar Hg concentrations (1.04 mg Hg kg⁻¹ dw) whereas endogeic earthworms accumulated highest amounts of Hg and methyl-Hg.
Afficher plus [+] Moins [-]Spent waste from edible mushrooms offers innovative strategies for the remediation of persistent organic micropollutants: A review
2022
Ghose, Anamika | Mitra, Sudip
Urgent and innovative strategies for removal of persistent organic micropollutants (OMPs) in soil, groundwater, and surface water are the need of the hour. OMPs detected in contaminated soils and effluents from wastewater treatment plants (WWTPs) are categorized as environmentally persistent pharmaceutical pollutants (EPPPs), and endocrine disrupting chemicals (EDCs), their admixture could cause serious ecological issues to the non-target species. As complete eradication of OMPs is not possible with the extant conventional WWTPs technology, the inordinate and reckless application of OMPs negatively impacts environmental regenerative and resilience capacity. Therefore, the cardinal focus of this review is the bioremediation of persistent OMPs through efficient application of an agro-waste, i.e. spent mushroom waste (SMW). This innovative, green, long-term strategy embedded in the circular economy, based on state of the art information is comprehensively assessed in this paper. SMW accrues ligninolytic enzymes such as laccase and peroxidase, with efficient mechanism to facilitate biodegradation of recalcitrant organic pollutants. It is vital in this context that future research should address immobilization of such enzymes to overcome quantitative and qualitative issues obstructing their widespread use in biodegradation. Therefore, dual benefit is gained from cultivating critical cash crops like mushrooms to meet the escalating demand for food resources and to aid in biodegradation. Hence, mushroom cultivation has positive environmental, social, and economic implications in developing countries like India.
Afficher plus [+] Moins [-]Innovative mycoremediation technique for treating unsterilized PCDD/F-contaminated field soil and the exploration of chlorinated metabolites
2021
Kaewlaoyoong, Acharee | Chen, Jenq-Renn | Cheng, Chih-Yu | Lin, Chitsan | Cheruiyot, Nicholas Kiprotich | Sriprom, Pongsert
Mycoremediation of unsterilized PCDD/F-contaminated field soil was successfully demonstrated by solid-state fermentation coupled with Pleurotus pulmonarius utilizing a patented incubation approach. The experiments were carried out in four setups with two as controls. The contaminated soil was homogenously mixed with solid inocula, 1:0.5 dry w/w, resulting in an initial concentration of 4432 ± 623 ng WHO-TEQ kg⁻¹. After a 30-day incubation under controlled conditions, the overall removal (approx. 60%) was non-specific. The removal was attributed to degradation by extracellular ligninolytic enzymes and uptake into the fruiting tissue (~110 ng WHO-TEQ kg⁻¹ of mushroom). Furthermore, less recalcitrant chlorinated metabolites were found, implying ether bond cleavage and dechlorination happened during the mycoremediation. These metabolites resulted from the complex interaction between P. pulmonarius and the indigenous microbes from the unsterilized soil. This study provides a new step toward scaling up this mycoremediation technique to treat unsterilized PCDD/F-contaminated field soil.
Afficher plus [+] Moins [-]A new pseudo-partition coefficient based on a weather-adjusted multicomponent model for mushroom uptake of pesticides from soil
2020
Li, Zijian
In this study, a weather-based multicomponent model was developed based on the unique biostructures and metabolic processes of mushrooms to evaluate their uptake of pesticides from soils, and the effects of temperature and relative humidity on the bioaccumulation of pesticides in mushrooms was comprehensively quantified. Additionally, a new pseudo-partition coefficient between mushrooms and soils was introduced to assess the impacts of different physiochemical properties on the pesticide uptake process. The results indicate that, in general, the pseudo-partition coefficient increases as the relative humidity increases for both the air and soil according to Fick’s law of gas diffusion and the spatial competition of molecules, respectively. Meanwhile, the effect of temperature on the pesticide bioaccumulation process is more complex. For most pesticides (e.g., atrazine), the pseudo-partition coefficient that was computed from the transpiration component had a maximum value at a specific temperature due to the temperature dependency of the transpiration and biodegradation processes. For some pesticides (e.g., ethoprophos), the pseudo-partition coefficient of the air-deposition component had a maximum value at a certain temperature that was caused by the ratio of the soil–air internal transfer energy and degradation activation energy of the pesticide. It was also concluded that for relatively low-volatility pesticides, transpiration dominated the bioaccumulation process; this was mainly determined from the pesticide water solubility. For nonbiodegradable pesticides (e.g., lindane), the computed coefficient values were relatively low due to their insolubility in water, which inhibits bioaccumulation in mushrooms and is one of the main reasons for their long-term persistence in soils.
Afficher plus [+] Moins [-]An epifluorescence-based technique accelerates risk assessment of aggregated bacterial communities in carcass and environment
2020
Mahmoud, M.A.M. | Zaki, R.S. | Abd- Elhafeez, H.H.
The severe and pervasive effects of multispecies foodborne microbial biofilms highlight the importance of rapid detection and diagnosis of contamination risk in the field using epifluorescence-based techniques (EBT) combined with automatic image-counting software. This study screened the hygiene quality of the environment, the carcass and the slaughtering equipment in the El-Kharga abattoir, New Valley Province, Egypt, to assess possible contamination during slaughter process. In addition, biofilm was assessed, and bacteria was enumerated by epifluorescence microscopy. Using both conventional and EBT, the highest bacterial counts were observed for the slaughtering equipment (6.6 and 5.2 cfu/cm2, respectively), followed by different parts of the carcass (4.1 and 4.4 cfu/cm2, respectively) and environmental samples (3.9 and 4.1 cfu/cm2, respectively). A high prevalence of E. coli O157:H7 was observed on the slaughtering equipment (25%), which also led to carcass (1%) contamination. Moreover, Enterobacteriaceae members were detected during examination, such as Klebsiella pneumoniae, Enterobacter aerogenes, and Raoultella ornithinolytica. Despite the relatively good hygiene quality of the abattoir environment, there is also a high risk associated with biofilm formation by pathogenic microorganisms on the slaughtering equipment. Moreover, EBT showed different structures of the biofilm, including those formed at different maturation stages, such as voids, microbubbles, channels and mushroom shapes. (EBT) microscopy combined with image-counting software could be a candidate substitute to estimate efficiently, precisely and rapidly the microbial aggregation and exposure risk in field than the conventional counting techniques.
Afficher plus [+] Moins [-]No radioactive contamination from the Chernobyl disaster in Hungarian white truffles (Tuber magnatum)
2019
Büntgen, Ulf | Jaggi, Maya | Egli, Simon | Heule, Martin | Peter, Martina | Zagyva, Imre | Krusic, Paul J. | Zimermann, Stephan | Bagi, Istvan
Despite being one of the most expensive gourmet foods, it remains unclear if the iconic White Truffle (Tuber magnatum Pico; hereinafter WT) accumulates radioactivity at harmful levels comparable to other fungal species. Here, we measure the active radiocaesium-137 concentration (137Cs) in ten hypogeous WT fruitbodies from southern Hungary, and the soils in which they were growing. All WTs reveal non-significant 137Cs values, thus providing an ‘all clear’ for WT hunters in the species' northernmost habitats, where corresponding soil samples occasionally exhibit slight 137Cs concentrations. Our results are particularly relevant in the light of a rapidly increasing global demand for WTs and their subsequent trading extent and price inflation, because up to 600 kg of fresh fruitbodies are harvested each year in southern Hungary. Moreover, some of Europe's forest ecosystems, in which mushroom picking is common practise, are still contaminated with 137Cs from the Chernobyl fallout more than 30 years ago, posing a serious threat to human health.
Afficher plus [+] Moins [-]Environmental impacts of dredging and other sediment disturbances on corals: A review
2012
Erftemeijer, Paul L.A. | Riegl, Bernhard | Hoeksema, Bert W. | Todd, Peter A.
A review of published literature on the sensitivity of corals to turbidity and sedimentation is presented, with an emphasis on the effects of dredging. The risks and severity of impact from dredging (and other sediment disturbances) on corals are primarily related to the intensity, duration and frequency of exposure to increased turbidity and sedimentation. The sensitivity of a coral reef to dredging impacts and its ability to recover depend on the antecedent ecological conditions of the reef, its resilience and the ambient conditions normally experienced. Effects of sediment stress have so far been investigated in 89 coral species (∼10% of all known reef-building corals). Results of these investigations have provided a generic understanding of tolerance levels, response mechanisms, adaptations and threshold levels of corals to the effects of natural and anthropogenic sediment disturbances. Coral polyps undergo stress from high suspended-sediment concentrations and the subsequent effects on light attenuation which affect their algal symbionts. Minimum light requirements of corals range from <1% to as much as 60% of surface irradiance. Reported tolerance limits of coral reef systems for chronic suspended-sediment concentrations range from <10mgL⁻¹ in pristine offshore reef areas to >100mgL⁻¹ in marginal nearshore reefs. Some individual coral species can tolerate short-term exposure (days) to suspended-sediment concentrations as high as 1000mgL⁻¹ while others show mortality after exposure (weeks) to concentrations as low as 30mgL⁻¹. The duration that corals can survive high turbidities ranges from several days (sensitive species) to at least 5–6weeks (tolerant species). Increased sedimentation can cause smothering and burial of coral polyps, shading, tissue necrosis and population explosions of bacteria in coral mucus. Fine sediments tend to have greater effects on corals than coarse sediments. Turbidity and sedimentation also reduce the recruitment, survival and settlement of coral larvae. Maximum sedimentation rates that can be tolerated by different corals range from <10mgcm⁻²d⁻¹ to >400mgcm⁻²d⁻¹. The durations that corals can survive high sedimentation rates range from <24h for sensitive species to a few weeks (>4weeks of high sedimentation or >14days complete burial) for very tolerant species. Hypotheses to explain substantial differences in sensitivity between different coral species include the growth form of coral colonies and the size of the coral polyp or calyx. The validity of these hypotheses was tested on the basis of 77 published studies on the effects of turbidity and sedimentation on 89 coral species. The results of this analysis reveal a significant relationship of coral sensitivity to turbidity and sedimentation with growth form, but not with calyx size. Some of the variation in sensitivities reported in the literature may have been caused by differences in the type and particle size of sediments applied in experiments. The ability of many corals (in varying degrees) to actively reject sediment through polyp inflation, mucus production, ciliary and tentacular action (at considerable energetic cost), as well as intraspecific morphological variation and the mobility of free-living mushroom corals, further contribute to the observed differences. Given the wide range of sensitivity levels among coral species and in baseline water quality conditions among reefs, meaningful criteria to limit the extent and turbidity of dredging plumes and their effects on corals will always require site-specific evaluations, taking into account the species assemblage present at the site and the natural variability of local background turbidity and sedimentation.
Afficher plus [+] Moins [-]Lead isotope ratios as tool for elucidation of chemical environment in a system of Macrolepiota procera (Scop.) Singer - soil
2021
Đurđić, Slađana | Stanković, Vesna | Ražić, Slavica | Mutić, Jelena
The analysis of isotope ratios of lead in the mushrooms and soil, where they were grown, assisted with a principal component analysis, offered a new perspective for understanding possible chemical environment in a real setup of those compartments. The content of lead and its isotope compositions were determined in soil samples and mushroom Macrolepiota procera from unpolluted area of Mountain Goč, Serbia. Sequential extraction procedure based on the Commission of the European Community Bureau of Reference (BCR) was applied on soil samples in order to determine the distribution of lead in the labile and un-labile fractions of the soil. Caps and stipes of mushrooms were subjected to microwave acid-assisted digestion prior to measurements by inductively coupled plasma quadrupole mass spectrometer for determination of lead content and lead isotope ratios. Information about the chemical fractionation of Pb in soil, Pb isotopic data from soil fractions and fruiting bodies allowed a more detailed insight on the uptake mechanisms. Lead was predominantly associated with reducible fraction (~ 60%). Only its small portion (∼ 1%) was present in the exchangeable and acid-extractable fractions suggesting the low mobility of Pb. Lead isotope analysis revealed the presence of anthropogenic lead in the surface soil. Significant lower ²⁰⁶Pb/²⁰⁷Pb compared with other fractions was found in exchangeable and acid-soluble fraction (1.331 ± 0.010), which corresponds to the isotope ratio of European gasoline. The highest ²⁰⁶Pb/²⁰⁷Pb ratio was observed in reducible fraction (1.162 ± 0.007), while in oxidizable and residual fraction, those values were similar (1.159 ± 0.006 and 1.159 ± 0.004, respectively). Distinction of exchangeable and acid-extractable fractions from others was also confirmed, for the first time, by principal component analysis. The analysis of four isotope ratios (²⁰⁶Pb/²⁰⁷Pb, ²⁰⁸Pb/²⁰⁶Pb, ²⁰⁶Pb/²⁰⁴Pb, and ²⁰⁷Pb/²⁰⁴Pb) indicated that the analyzed M. procera accumulates lead from the first two fractions of topsoil layers.
Afficher plus [+] Moins [-]Natural radioactivity and total K content in wild-growing or cultivated edible mushrooms and soils from Galicia (NW, Spain)
2021
Melgar, María Julia | García, María Ángeles
The radioactive isotope, ⁴⁰K, of naturally occurring potassium (0.012%) is present in the Earth’s crust in a low percentage of all potassium, leading to its presence in almost all foodstuffs. The impact of ⁴⁰K activity concentrations was assessed in wild and cultivated edible mushrooms and in growing substrates. Samples were analysed by gamma spectroscopy. In the wild mushroom species, the average activity concentration of ⁴⁰K was 1291 Bq kg⁻¹ dry weight (dw), approximately 140 Bq kg⁻¹ fresh weight (fw), with a range of average values per species from 748 in Lactarius deliciosus to 1848 Bq kg⁻¹ dw in Tricholoma portentosum. The cultivated species presented an average value of 1086 Bq kg⁻¹ dw; and the soils, compost of cultivation and wood of substrate are 876, 510 and 59.4 Bq kg⁻¹ dw, respectively. The total K content reached a maximum of 59,935 mg kg⁻¹ dw in T. portentosum. The transfer factors (TF > 1) suggested that mushrooms preferentially bioconcentrated ⁴⁰K. Cantharellus cibarius, Craterellus tubaeformis, Hydnum repandum and T. portentosum by most TF could be considered as bioindicators of ⁴⁰K. Taking into account that the annual radiation dose of ⁴⁰K due to the average consumption of mushrooms analysed (0.15 μSv/year) is very low, it can be concluded that the consumption of these mushrooms does not represent a toxicological risk for human health. Finally, according to the total K content, from the nutritional point of view, these mushrooms could be considered as a potential source of potassium for the human diet.
Afficher plus [+] Moins [-]