Affiner votre recherche
Résultats 1-10 de 91
GAPS-megacities: A new global platform for investigating persistent organic pollutants and chemicals of emerging concern in urban air
2020
Saini, Amandeep | Harner, Tom | Chinnadhurai, Sita | Schuster, Jasmin K. | Yates, Alan | Sweetman, Andrew | Aristizabal-Zuluaga, Beatriz H. | Jiménez, Begoña | Manzano, Carlos A. | Gaga, Eftade O. | Stevenson, Gavin | Falandysz, Jerzy | Ma, Jianmin | Miglioranza, Karina S.B. | Kannan, Kurunthachalam | Tominaga, Maria | Jariyasopit, Narumol | Rojas, Nestor Y. | Amador-Muñoz, Omar | Sinha, Ravindra | Alani, Rose | Suresh, R. | Nishino, Takahiro | Shoeib, Tamer
A pilot study was initiated in 2018 under the Global Atmospheric Passive Sampling (GAPS) Network named GAPS-Megacities. This study included 20 megacities/major cities across the globe with the goal of better understanding and comparing ambient air levels of persistent organic pollutants and other chemicals of emerging concern, to which humans residing in large cities are exposed. The first results from the initial period of sampling are reported for 19 cities for several classes of flame retardants (FRs) including organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), and halogenated flame retardants (HFRs) including new flame retardants (NFRs), tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDD). The two cities, New York (USA) and London (UK) stood out with ∼3.5 to 30 times higher total FR concentrations as compared to other major cities, with total concentrations of OPEs of 15,100 and 14,100 pg/m³, respectively. Atmospheric concentrations of OPEs significantly dominated the FR profile at all sites, with total concentrations in air that were 2–5 orders of magnitude higher compared to other targeted chemical classes. A moderately strong and significant correlation (r = 0.625, p < 0.001) was observed for Gross Domestic Product index of the cities with total OPEs levels. Although large differences in FR levels were observed between some cities, when averaged across the five United Nations regions, the FR classes were more evenly distributed and varied by less than a factor of five. Results for Toronto, which is a ‘reference city’ for this study, agreed well with a more in-depth investigation of the level of FRs over different seasons and across eight sites representing different urban source sectors (e.g. traffic, industrial, residential and background). Future sampling periods under this project will investigate trace metals and other contaminant classes, linkages to toxicology, non-targeted analysis, and eventually temporal trends. The study provides a unique urban platform for evaluating global exposome.
Afficher plus [+] Moins [-]Exposure assessment of emissions from mobile food carts on New York City streets
2020
Nahar, Kamrun | Rahman, Md Mostafijur | Raja, Amna | Thurston, George D. | Gordon, Terry
Food carts are common along streets in cities throughout the world. In North America, food cart vendors generally use propane, charcoal, or both propane and charcoal (P and C) for food preparation. Although cooking emissions are known to be a major source of indoor air pollution, there is limited knowledge on outdoor cooking’s impact on the ambient environment and, in particular, the relative contribution of the different cooking fuels. This field study investigated the air pollution the public is exposed to in the micro-environment around 19 food carts classified into 3 groups: propane, charcoal, and P and C carts. Concentrations near the food carts were measured using both real-time and filter-based methods. Mean real-time concentrations of PM₂.₅, BC₂.₅, and particle counts were highest near the charcoal food carts: 196 μg/m³, 5.49 μg/m³, and 69,000 particles/cm³, respectively, with peak exposures of 1520 μg/m³, 67.9 μg/m³, and 235,000 particles/cm³, respectively. In order of pollution emission impacts: charcoal > P and C > propane carts. Thus, significant differences in air pollution emissions occurred in the vicinity of mobile food carts, depending on the fuel used in food preparation. Local air pollution polices should consider these emission factors in regulating food cart vendor operations.
Afficher plus [+] Moins [-]Occurrence and distribution of melamine and its derivatives in surface water, drinking water, precipitation, wastewater, and swimming pool water
2020
Zhu, Hongkai | Kannan, Kurunthachalam
The extensive use of melamine and its three derivatives (i.e., ammeline, ammelide, and cyanuric acid) resulted in their widespread occurrence in the environment. Nevertheless, limited information is available on their distribution in the aquatic environment. In this study, concentrations and profiles of melamine and its derivatives were determined in 223 water samples, comprising river water, lake water, seawater, tap water, bottled water, rain water, wastewater, and swimming pool water, collected from New York State, USA. The sum concentrations of melamine and its derivatives (∑₄MELs) decreased in the following order: swimming pool water (median: 1.5 × 10⁷ ng/L) ≫ wastewater (1240) > precipitation (739) > tap water (512) > river water (370) > lake water (347) > seawater (186) > bottled water (98). Cyanuric acid was the major compound, accounting for 60–100% of ∑₄MELs concentrations in swimming pool water, wastewater, precipitation, tap water, seawater, and bottled water, whereas melamine dominated in river and lake water (54–64% of ∑₄MELs). Significant positive correlations (0.499 < R < 0.703, p < 0.002) were found between the concentrations of melamine and atrazine (a triazine herbicide) in surface waters. The geographic distribution in the concentrations of ∑₄MELs in river, lake, and tap water corresponded with the degree of urbanization, suggesting that human activities contribute to the sources melamine and cyanuric acid in the aquatic environments. A preliminary hazard assessment of melamine and cyanuric acid in waters suggested that their ecological or human health risks were minimal. This is the first study to document the occurrence and spatial distribution of melamine and its derivatives in waters from the United States.
Afficher plus [+] Moins [-]Integrating terrestrial and aquatic processes toward watershed scale modeling of dissolved organic carbon fluxes
2019
Du, Xinzhong | Zhang, Xuesong | Mukundan, Rajith | Hoàng, Linh | Owens, Emmet M.
Dissolved organic carbon (DOC) is not only a critical component of global and regional carbon budgets, but also an important precursor for carcinogenic disinfection byproducts (DBP) generated during drinking water disinfection process. The lack of process based watershed scale model for carbon cycling has been a limiting factor impeding effective watershed management to control DOC fluxes to source waters. Here, we integrated terrestrial and aquatic carbon processes into the widely tested Soil and Water Assessment Tool (SWAT) watershed model to enable watershed-scale DOC modeling (referred to as SWAT-DOC hereafter). The modifications to SWAT mainly fall into two groups: (1) DOC production in soils and its transport to aquatic environment by different hydrologic processes, and (2) riverine transformation of DOC and their interactions with particular organic carbon (POC), inorganic carbon and algae (floating and bottom). We tested the new SWAT-DOC model in the Cannonsville watershed, which is part of the New York City (NYC) water supply system, using long-term DOC load data (from 1998 to 2012) derived from 1399 DOC samplings. The calibration and verification results indicate that SWAT-DOC achieved satisfactory performance for both streamflow and DOC at daily and monthly temporal scales. The parameter sensitivity analysis indicates that DOC loads in the Cannonsville watershed are controlled by the DOC production in soils and its transport in both terrestrial and aquatic environments. Further model uncertainty analysis indicates high uncertainties associated with peak DOC loads, which are attributed to underestimation of high streamflows. Therefore, future efforts to enhance SWAT-DOC to better represent runoff generation processes hold promise to further improve DOC load simulation. Overall, the wide use of SWAT and the satisfactory performance of SWAT-DOC make it a useful tool for DOC modeling and mitigation at the watershed scale.
Afficher plus [+] Moins [-]Determinants of prenatal exposure to polybrominated diphenyl ethers (PBDEs) among urban, minority infants born between 1998 and 2006
2018
Cowell, Whitney J. | Sjödin, Andreas | Jones, Richard | Wang, Ya | Wang, Shuang | Herbstman, Julie B.
Polybrominated diphenyl ethers (PBDEs) are environmentally persistent chemicals that structurally resemble legacy pollutants, such as polychlorinated biphenyls (PCBs). PBDEs were added to consumer products for over 30 years, before being phased out due to evidence of toxicity. We examined temporal changes in prenatal exposure to PBDEs, as well as other sources of variation. We measured PBDEs in umbilical cord plasma from 327 minority infants born in New York City between 1998 and 2006. We used linear regression to examine changes in concentrations over time and in relation to lifestyle characteristics collected during pregnancy. We detected BDE-47 in 80% of samples with a geometric mean concentration of 14.1 ng/g lipid. Ethnicity was the major determinant of PBDE exposure; African American infants had 58% higher geometric mean cord plasma concentrations of BDE-47 (p < 0.01) compared to Dominican infants. Notably, African American mothers were more likely to be born in the United States, which itself was associated with 40% (p < 0.01) higher concentrations. We observed small decreases in PBDE concentrations by date of birth and no difference before and after their phase-out in 2004. Final multivariable models explained 8–12% of variability in PBDE concentrations depending on the congener. Our finding that prenatal exposure to PBDEs decreased only modestly between 1998 and 2006 is consistent with the persistent properties of PBDEs and their ongoing release from existing consumer products.
Afficher plus [+] Moins [-]Microenvironmental air quality impact of a commercial-scale biomass heating system
2017
Tong, Zheming | Yang, Bo | Hopke, Philip K. | Zhang, K Max
Initiatives to displace petroleum and climate change mitigation have driven a recent increase in space heating with biomass combustion. However, there is ample evidence that biomass combustion emits significant quantities of health damaging pollutants. We investigated the near-source micro-environmental air quality impact of a biomass-fueled combined heat and power system equipped with an electrostatic precipitator (ESP) in Syracuse, NY. Two rooftop sampling stations with PM2.5 and CO2 analyzers were established in such that one could capture the plume while the other one served as the background for comparison depending on the wind direction. Four sonic anemometers were deployed around the stack to quantify spatially and temporally resolved local wind patterns. Fuel-based emission factors were derived based on near-source measurement. The Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model was then applied to simulate the spatial variations of primary PM2.5 without ESP. Our analysis shows that the absence of ESP could lead to an almost 7 times increase in near-source primary PM2.5 concentrations with a maximum concentration above 100 μg m−3 at the building rooftop. The above-ground “hotspots” would pose potential health risks to building occupants since particles could penetrate indoors via infiltration, natural ventilation, and fresh air intakes on the rooftop of multiple buildings. Our results demonstrated the importance of emission control for biomass combustion systems in urban area, and the need to take above-ground pollutant “hotspots” into account when permitting distributed generation. The effects of ambient wind speed and stack temperature, the suitability of airport meteorological data on micro-environmental air quality were explored, and the implications on mitigating near-source air pollution were discussed.
Afficher plus [+] Moins [-]Potential health benefits of controlling dust emissions in Beijing
2016
Meng, Jing | Liu, Junfeng | Fan, Songmiao | Kang, Chuyun | Yi, Kan | Cheng, Yanli | Shen, Xing | Tao, Shu
Although the adverse impact of fine particulate matter (i.e., PM2.5) on human health has been well acknowledged, little is known of the health effects of its specific constituents. Over the past decade, the annual average dust concentrations in Beijing were approximately ∼14 μg m−3, a value that poses a great threat to the city's 20 million residents. In this study, we quantify the potential long-term health damages in Beijing resulting from the dust exposure that occurred from 2000 to 2011. Each year in Beijing, nearly 4000 (95% CI: 1000–7000) premature deaths may be associated with long-term dust exposure, and ∼20% of these deaths are attributed to lung cancer. A decomposition analysis of the inter-annual variability of premature deaths in Beijing indicates that dust concentrations determine the year-to-year tendency, whereas population growth and lung cancer mortality rates drive the increasing tendency of premature death. We suggest that if Beijing takes effective measures towards reducing dust concentrations (e.g., controlling the resuspension of road dust and the fugitive dust from construction sites) to a level comparable to that of New York City's, the associated premature deaths will be significantly reduced. This recommendation offers “low-hanging fruit” suggestions for pollution control that would greatly benefit the public health in Beijing.
Afficher plus [+] Moins [-]Salting our landscape: An integrated catchment model using readily accessible data to assess emerging road salt contamination to streams
2011
Jin, Li | Whitehead, Paul | Siegel, Donald I. | Findlay, Stuart
A new integrated catchment model for salinity has been developed to assess the transport of road salt from upland areas in watersheds to streams using readily accessible landscape, hydrologic, and meteorological data together with reported salt applications. We used Fishkill Creek (NY) as a representative watershed to test the model. Results showed good agreement between modeled and measured stream water chloride concentrations. These results suggest that a dominant mode of catchment simulation that does not entail complex deterministic modeling is an appropriate method to model salinization and to assess effects of future applications of road salt to streams. We heuristically increased and decreased salt applications by 100% and results showed that stream chloride concentrations increased by 13% and decreased by 7%, respectively. The model suggests that future management of salt application can reduce environmental concentrations, albeit over some time.
Afficher plus [+] Moins [-]Gaseous mercury emissions from unsterilized and sterilized soils: The effect of temperature and UV radiation
2009
Choi, Hyun-Deok | Holsen, Thomas M.
Mercury (Hg) emissions from the soils taken from two different sites (deciduous and coniferous forests) in the Adirondacks were measured in outdoor and laboratory experiments. Some of the soil samples were irradiated to eliminate biological activity. The result from the outdoor measurements with different soils suggests the Hg emission from the soils is partly limited by fallen leaves covering the soils which helps maintain relatively high soil moisture and limits the amount of heat and solar radiation reaching the soil surface. In laboratory experiments exposure to UV-A (365 nm) had no significant effect on the Hg emissions while the Hg emissions increased dramatically during exposure to UV-B (302 nm) light suggesting UV-B directly reduced soil-associated Hg. Overall these results indicate that for these soils biotic processes have a relatively constant and smaller influence on the Hg emission from the soil than the more variable abiotic processes. Hg emission measurements from soils indicate that abiotic processes were more important than biotic processes in reducing Hg and controlling emissions.
Afficher plus [+] Moins [-]Ultraviolet absorbance as a proxy for total dissolved mercury in streams
2009
Dittman, Jason A. | Shanley, James B. | Driscoll, Charles T. | Aiken, George R. | Chalmers, Ann T. | Towse, Janet E.
Stream water samples were collected over a range of hydrologic and seasonal conditions at three forested watersheds in the northeastern USA. Samples were analyzed for dissolved total mercury (THgd), DOC concentration and DOC composition, and UV₂₅₄ absorbance across the three sites over different seasons and flow conditions. Pooling data from all sites, we found a strong positive correlation of THgd to DOC (r² = 0.87), but progressively stronger correlations of THgd with the hydrophobic acid fraction (HPOA) of DOC (r² = 0.91) and with UV254 absorbance (r² = 0.92). The strength of the UV₂₅₄ absorbance-THgd relationship suggests that optical properties associated with dissolved organic matter may be excellent proxies for THgd concentration in these streams. Ease of sample collection and analysis, the potential application of in-situ optical sensors, and the possibility for intensive monitoring over the hydrograph make this an effective, inexpensive approach to estimate THgd flux in drainage waters. Ultraviolet absorbance measurements are a cost-effective proxy to estimate dissolved mercury concentration in stream water.
Afficher plus [+] Moins [-]