Affiner votre recherche
Résultats 1-10 de 146
Contribution of liquid water content enhancing aqueous phase reaction forming ambient particulate nitrosamines
2022
Choi, Na Rae | Park, Seungshik | Ju, Seoryeong | Lim, Yong Bin | Lee, Ji Yi | Kim, Eunhye | Kim, Soontae | Shin, Hye Jung | Kim, Yong Pyo
Contribution of liquid water content (LWC) to the levels of the carcinogenic particulate nitro(so) compounds and the chemistry affecting LWC were investigated based on the observation of seven nitrosamines and two nitramines in rural (Seosan) and urban (Seoul) area in South Korea during October 2019 and a model simulation. The concentrations of both the total nitrosamines and nitramines were higher in Seosan (12.48 ± 16.12 ng/m³ and 0.65 ± 0.71 ng/m³, respectively) than Seoul (7.41 ± 13.59 ng/m³ and 0.24 ± 0.15 ng/m³, respectively). The estimated LWC using a thermodynamic model in Seosan (12.92 ± 9.77 μg/m³) was higher than that in Seoul (6.20 ± 5.35 μg/m³) mainly due to higher relative humidity (75 ± 9% (Seosan); 62 ± 10% (Seoul)) and higher concentrations of free ammonia (0.13 ± 0.09 μmol/m³ (Seosan); 0.08 ± 0.01 μmol/m³ (Seoul)) and total nitric acid (0.09 ± 0.07 μmol/m³ (Seosan); 0.04 ± 0.02 μmol/m³ (Seoul)) in Seosan while neither fog nor rain occurred during the sampling period. The relatively high concentrations of the particulate nitrosamines (>30 ng/m³) only observed probably due to the higher LWC (>10 μg/m³) in Seosan. It implies that aqueous phase reactions involving NO₂ and/or uptake from the gas phase enhanced by LWC could be promoted in Seosan. Strong correlation between the concentrations of nitrosodi-methylamine (NDMA), an example of nitrosamines, simulated by a kinetic box model including the aqueous phase reactions and the measured concentration of NDMA in Seosan (R = 0.77; 0.37 (Seoul)) indicates that the aqueous phase reactions dominantly enhanced the NDMA concentrations in Seosan. On the other hand, it is estimated that the formation of nitrosamines by aqueous phase reaction was not significant due to the relatively lower LWC in Seoul compared to that in Seosan. Furthermore, it is presumed that nitramines are mostly emitted from the primary emission sources. This study implies that the concentration of the particulate nitrosamines can be promoted by aqueous phase reaction enhanced by LWC.
Afficher plus [+] Moins [-]A simple, rapid and accurate method for the sample preparation and quantification of meso- and microplastics in food and food waste streams
2022
Lievens, Siebe | Slegers, Thomas | Mees, Maarten A. | Thielemans, Wim | Poma, Giulia | Covaci, Adrian | Van Der Borght, Mik
Plastics are produced and used in large quantities worldwide (e.g. as food packaging). In line with this, plastic particles are found throughout the ecosphere and in various foods. As a result, plastics are also present in energy-rich waste biomass derived from the food industry, supermarkets, restaurants, etc. These waste streams are a valuable source for biogas production but can also be used to feed insects that in turn upcycle it into new high-value biomass. In both applications, the remaining residue can be used as fertilizer. Due to the present plastic particles, these applications could pose a continued threat to the environment, and both human and animal health. Therefore, the need of determining the (micro)plastic content to assess the potential danger is rising. In this research, a closed-vessel microwave-assisted acid digestion method was developed to accurately determine meso- and microplastic contents in food (waste) matrices by solubilising this food matrix. Polyvinyl chloride (PVC) food packaging foil was used to develop the method, using a full factorial design with three parameters (nitric acid concentration (c(HNO₃)), temperature (T), and time (t)). According to this model, the best practical conditions were c(HNO₃) = 0.50 mol/L, T = 170 °C, and t = 5.00 min. Subsequently, the method was tested on five other plastics, namely high- and low-density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET), mixed with a food matrix, resulting in a mean plastic recovery of 102.2 ± 4.1%. Additionally, the polymers were not oxidised during the microwave digestion. For PVC and PS hardly any degradation was found, while HDPE, LDPE, and PP showed slight chain degradation, although without recovery loss. In conclusion, the method is an accurate approach to quantify the total meso- and microplastic content in food (waste) matrices with minimal change in their intrinsic characteristics.
Afficher plus [+] Moins [-]Chemical aging of hydrochar improves the Cd2+ adsorption capacity from aqueous solution
2021
Li, Detian | Cui, Hongbiao | Cheng, Yueqin | Xue, Lihong | Wang, Bingyu | He, Huayong | Hua, Yun | Chu, Qingnan | Feng, Yanfang | Yang, Linzhang
Hydrochar (HC) serves as a promising adsorbent to remove the cadmium from aqueous solution due to porous structure. The chemical aging method is an efficient and easy-operated approach to improve the adsorption capacity of HC. In this study, four chemical aging hydrochars (CAHCs) were obtained by using nitric acid (HNO₃) with mass fractions of 5% (N5-HC), 10% (N10-HC), and 15% (N15-HC) to age the pristine HC (N0-HC) and remove the Cd²⁺ from the aqueous solution. The results displayed that the N15-HC adsorption capacity was 19.99 mg g⁻¹ (initial Cd²⁺ concentration was 50 mg L⁻¹), which increased by 7.4 folds compared to N0-HC. After chemical aging, the specific surface area and oxygen-containing functional groups of CAHCs were increased, which contributed to combination with Cd²⁺ by physical adsorption and surface complexation. Moreover, ion exchange also occurred during the adsorption process of Cd²⁺. These findings have important implications for wastewater treatment to transform the forestry waste into a valuable adsorbent for Cd²⁺ removal from water.
Afficher plus [+] Moins [-]Atmospheric ammonia and its effect on PM2.5 pollution in urban Chengdu, Sichuan Basin, China
2021
Huang, Xiaojuan | Zhang, Junke | Zhang, Wei | Tang, Guiqian | Wang, Yuesi
Controlling ammonia (NH₃) emissions has been proposed as a strategy to mitigate haze pollution. To explore the role of NH₃ in haze pollution in Sichuan Basin, where agricultural activities are intense, hourly in situ data of NH₃, as well as nitric acid and secondary inorganic aerosols (SIAs) were gathered in Chengdu from April 2017 to March 2018. We found that NH₃ had an annual mean concentration of 9.7 ± 3.5 (mean ± standard deviation) μg m⁻³, and exhibited seasonal variations (spring > summer > autumn and winter) due to changes in emission sources and meteorological conditions (particularly temperature). Chengdu's atmosphere is generally NH₃-sufficient, especially in the warm seasons, implying that the formation of SIAs is more sensitive to the availability of nitric acid. However, an NH₃ “sufficient-to-deficient” transition was found to occur during winter pollution periods, and the frequency of NH₃ deficiency increased with the aggravation of pollution. Under NH₃-deficient conditions, the nitrogen oxidation ratio increased linearly with the increase in free NH₃, implying that NH₃ contributes appreciably to the formation of nitrate and thus to high PM₂.₅ loadings. No relationships of NH₃ with fossil fuel combustion–related pollutants were found. The NH₃ emissions from farmland and livestock waste in the suburbs of Chengdu and regional transport from west of Chengdu probably contribute to the occurrence of high PM₂.₅ loading in winter and spring, respectively. These results suggest that to achieve effective mitigation of PM₂.₅ in Chengdu, local and regional emission control of NH₃ and NOx synergistically would be effective.
Afficher plus [+] Moins [-]Effective treatment of levofloxacin wastewater by an electro-Fenton process with hydrothermal-activated graphite felt as cathode
2020
Liu, Jia-Ming | Ji, Zhi-Yong | Shi, Ya-Bin | Yuan, Peng | Guo, Xiao-Fu | Zhao, Li-Ming | Li, Shuming | Li, Hong | Yuan, Jun-Sheng
The performance of the cathode significantly affects the ability of the electro-Fenton (EF) process to degrade chemicals. In this study, a simple method to modify the graphite felt (GF) cathode was proposed, i.e. oxidizing GF by hydrothermal treatment in nitric acid. The surface physical and electrochemical properties of modified graphite felt were characterized by several techniques: scanning electron microscope (SEM), water contact angle, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and linear scanning voltammetry (LSV). Compared with an unmodified GF (GF-0), the oxygen reduction reaction (ORR) activity of a modified GF was significantly improved due to the introduction of more oxygen-containing functional groups (OGs). Furthermore, the results showed that GF was optimally modified after 9 h (GF-9) of treatment. As an example, the H₂O₂ generation by GF-9 was 2.26 times higher than that of GF-0. After optimizing the process parameters, which include the initial Fe²⁺ concentration and current density, the apparent degradation rate constant of levofloxacin (LEV) could reach as high as 0.40 min⁻¹. Moreover, the total organic carbon (TOC) removal rate and mineralization current efficiency (MCE) of the modified cathode were much higher than that of the GF-0. Conclusively, GF-9 is a promising cathode for the future development in organic pollutant removal via EF.
Afficher plus [+] Moins [-]Joining empirical and modelling approaches to estimate dry deposition of nitrogen in Mediterranean forests
2018
García-Gómez, Héctor | Izquieta-Rojano, Sheila | Aguillaume, Laura | González-Fernández, Ignacio | Valiño, Fernando | Elustondo, David | Santamaría, Jesús M. | Àvila, Anna | Bytnerowicz, Andrzej | Bermejo, Victoria | Alonso, Rocío
In Mediterranean areas, dry deposition is a major component of the total atmospheric N input to natural habitats, particularly to forest ecosystems. An innovative approach, combining the empirical inferential method (EIM) for surface deposition of NO₃⁻ and NH₄⁺ with stomatal uptake of NH₃, HNO₃ and NO₂ derived from the DO₃SE (Deposition of Ozone and Stomatal Exchange) model, was used to estimate total dry deposition of inorganic N air pollutants in four holm oak forests under Mediterranean conditions in Spain. The estimated total deposition varied among the sites and matched the geographical patterns previously found in model estimates: higher deposition was determined at the northern site (28.9 kg N ha⁻¹ year⁻¹) and at the northeastern sites (17.8 and 12.5 kg N ha⁻¹ year⁻¹) than at the central-Spain site (9.4 kg N ha⁻¹ year⁻¹). On average, the estimated dry deposition of atmospheric N represented 77% ± 2% of the total deposition of N, of which surface deposition of gaseous and particulate atmospheric N averaged 10.0 ± 2.9 kg N ha⁻¹ year⁻¹ for the four sites (58% of the total deposition), and stomatal deposition of N gases averaged 3.3 ± 0.8 kg N ha⁻¹ year⁻¹ (19% of the total deposition). Deposition of atmospheric inorganic N was dominated by the surface deposition of oxidized N in all the forests (means of 54% and 42% of the dry and total deposition, respectively). The relative contribution of NO₂ to dry deposition averaged from 19% in the peri-urban forests to 11% in the most natural site. During the monitoring period, the empirical critical loads provisionally proposed for ecosystem protection (10–20 kg N ha⁻¹ year⁻¹) was exceeded in three of the four studied forests.
Afficher plus [+] Moins [-]Graphite particle electrodes that enhance the detoxification of municipal solid waste incineration fly ashes in a three-dimensional electrokinetic platform and its mechanisms
2018
Huang, Tao | Zhang, Shuwen | Liu, Longfei | Xu, Jiaojiao
This paper investigated the application of graphite particle electrodes to the removal of Zn, Pb, Cu, and Cd from municipal solid waste incineration (MSWI) fly ashes in a three-dimensional (3D) electrokinetic reactor. The influences of the voltage gradient, mass ratio of graphite powers to fly ashes, nitric acid concentrations, proposing times, and liquid-solid (L-M) ratios on the remedial efficiencies of MSWI fly ashes were comprehensively studied in an orthogonal deign and a sequential double-factor setup. Significant analysis showed that changes in the mass ratios and nitric acid concentrations both had a statistically significant effect on the removals of Zn and Pb. Proposing times and L-M ratios both remarkably affected the removals of heavy metals (HMs) in a 3D electrochemical system. The graphite powers had a narrower distribution interval and slightly larger surface areas compared with MSWI fly ashes, which relented pH gradients over the time in the electrochemical experiments and minimized the bubble barricade caused by the hydrolysis. The particle electrode had increased the residue factions of Zn, Pb, Cu, and Cd in S1 region by approximately 216%, 136%, 309%, and 950%, respectively, compared with the raw MSWI fly ashes. The addition of graphite powders to a two-dimensional (2D) electrochemical process strengthened hydrolysis reactions, shortened time for the redistribution of pH balance, decreased the tortuosity of migration path, and increased the desorption concentrations of HMs in the sample area.
Afficher plus [+] Moins [-]High resolution estimates of the corrosion risk for cultural heritage in Italy
2017
De Marco, Alessandra | Screpanti, Augusto | Mircea, Mihaela | Piersanti, Antonio | Proietti, Chiara | Fornasier, M Francesca
Air pollution plays a pivotal role in the deterioration of many materials used in buildings and cultural monuments causing an inestimable damage. This study aims to estimate the impacts of air pollution (SO2, HNO3, O3, PM10) and meteorological conditions (temperature, precipitation, relative humidity) on limestone, copper and bronze based on high resolution air quality data-base produced with AMS-MINNI modelling system over the Italian territory over the time period 2003–2010. A comparison between high resolution data (AMS-MINNI grid, 4 × 4 km) and low resolution data (EMEP grid, 50 × 50 km) has been performed. Our results pointed out that the corrosion levels for limestone, copper and bronze are decreased in Italy from 2003 to 2010 in relation to decrease of pollutant concentrations. However, some problem related to air pollution persists especially in Northern and Southern Italy. In particular, PM10 and HNO3 are considered the main responsible for limestone corrosion. Moreover, the high resolution data (AMS-MINNI) allowed the identification of risk areas that are not visible with the low resolution data (EMEP modelling system) in all considered years and, especially, in the limestone case. Consequently, high resolution air quality simulations are suitable to provide concrete benefits in providing information for national effective policy against corrosion risk for cultural heritage, also in the context of climate changes that are affecting strongly Mediterranean basin.
Afficher plus [+] Moins [-]Towards a better spatial quantification of nitrogen deposition: A case study for Czech forests
2016
Hůnová, Iva | Kurfürst, Pavel | Vlček, Ondřej | Stráník, Vojtěch | Stoklasová, Petra | Schovánková, Jana | Srbová, Daša
The quantification of atmospheric deposition flux is essential for assessment of its impact on ecosystems. We present an advanced approach for the estimation of the spatial pattern of atmospheric nitrogen deposition flux over the Czech forests, collating all available measured data and model results. The aim of the presented study is to provide an improved, more complete, more reliable and more realistic estimate of the spatial pattern of nitrogen deposition flux over one country. This has so far usually been based on measurements of ambient NOx concentrations as dry deposition proxy, and NH4+ and NO3− in precipitation as wet deposition proxy. For estimation of unmeasured species contributing to dry deposition, we used the CAMx Eulerian photochemical dispersion model, coupled with the Aladin regional numeric weather prediction model. The contribution of fog and dissolved organic nitrogen was estimated using a geostatistical data driven model. We prepared individual maps for particular components applying the most relevant approach and then merged all layers to obtain a final map representing the best estimate of nitrogen deposition over the Czech Republic. Final maps accounting for unmeasured species clearly indicate that the approach used so far may result in a substantial underestimation of nitrogen deposition flux. Our results showed that nitrogen deposition over the Czech forested area in 2008 was well above 2 g N m−2 yr−1, with almost 70% of forested area receiving 3–4 g N m−2 yr−1. NH3 and gaseous HNO3, contributing about 80%, dominated the dry nitrogen deposition. Estimating the unmeasured nitrogen species by modeled values provides realistic approximations of total nitrogen deposition that also result in more realistic spatial patterns that could be used as input for further studies of likely nitrogen impacts on ecosystems.
Afficher plus [+] Moins [-]Contamination and isotopic composition of Pb and Sr in offshore surface sediments from Jiulong River, Southeast China
2016
Lin, Chengqi | Yu, Ruilian | Hu, Gongren | Yang, Qiuli | Wang, Xiaoming
Concentrations and isotopic compositions of Pb and Sr in the surface sediment samples from Jiulong River, Southeast China, were determined to trace the sources of Pb and Sr. The average concentrations of Pb and Sr were 110.9 mg/kg and 69.2 mg/kg, approximately 3.2 and 2.0 times of the local soil background values, respectively. Average 62.9% of total Pb and 36.8% of total Sr in the investigated surface sediment samples were extracted by 0.5 mol/L HNO3. Pb and Sr presented slight contamination, and Pb showed low ecological risk for most of surface sediment samples in Jiulong River according to geo-accumulation index (Igeo) and potential ecological risk index (RI). The results of Pb isotopic compositions in sediment samples and potential sources showed that the Pb accumulated in the surface sediments of Jiulong River was mainly from parent material, coal combustion and Fujian Pb-Zn deposit, with the contribution rates of 34.4%, 34.0%, and 31.6%, respectively. The results of Pb isotopic compositions in 0.5 mol/L HNO3-extraction suggested that dilute HNO3-extraction was more sensitive in identifying anthropogenic Pb sources than total digestion. The results of Sr isotopic compositions showed that Sr accumulated in the surface sediments of Jiulong River estuary mainly derived from external source and natural source (parent material) with the contribution rates of 48.1% and 51.9%, respectively.
Afficher plus [+] Moins [-]