Affiner votre recherche
Résultats 1-10 de 77
Ozone symptoms in native herbaceous species in Southern Alps: field assessment and laboratory verification
2002
Gerosa, G. (Universita degli Studi, Milano (Italy). DiProVe) | Marzuoli, R. | Cesana, V. | Ballarin-Denti A. | Bussotti, F.
Small attention has been still addressed to the study of ozone effects on seminatural vegetation. Following this direction we selected an ozone heavily exposed area in Northern Italy, where the development of visible injuries on leaves of common pasture herbs were observed. The selected area, an alpine pasture located at Moggio belongs to the Level II permanent monitoring network of the ICP-Forest program. The ozone exposure mapping exercise made on the whole regional domain estimated for this area an AOT40f of 32000 ppb.h as 1999 and 2000 years average
Afficher plus [+] Moins [-]Biodegradation of 4-nitroaniline by novel isolate Bacillus sp. strain AVPP64 in the presence of pesticides Texte intégral
2022
Silambarasan, Sivagnanam | Cornejo, Pablo | Vangnai, Alisa S.
In this study, Bacillus sp. strain AVPP64 was isolated from diuron-contaminated soil. It showed 4-nitroaniline (4-NA) degradation, pesticide tolerance, and self-nutrient integration via nitrogen (N)-fixation and phosphate (P)-solubilization. The rate constant (k) and half-life period (t₁/₂) of 4-NA degradation in the aqueous medium inoculated with strain AVPP64 were observed to be 0.445 d⁻¹ and 1.55 d, respectively. Nevertheless, in the presence of chlorpyrifos, profenofos, atrazine and diuron pesticides, strain AVPP64 degraded 4-NA with t₁/₂ values of 2.55 d, 2.26 d, 2.31 d and 3.54 d, respectively. The strain AVPP64 fixed 140 μg mL⁻¹ of N and solubilized 103 μg mL⁻¹ of P during the presence of 4-NA. In addition, strain AVPP64 produced significant amounts of plant growth-promoting metabolites like indole 3-acetic acid, siderophores, exo-polysaccharides and ammonia. In the presence of 4-NA and various pesticides, strain AVPP64 greatly increased the growth and biomass of Vigna radiata and Crotalaria juncea plants. These results revealed that Bacillus sp. strain AVPP64 can be used as an inoculum for bioremediation of 4-NA contaminated soil and sustainable crop production even when pesticides are present.
Afficher plus [+] Moins [-]A review of microplastic impacts on seagrasses, epiphytes, and associated sediment communities Texte intégral
2022
Gerstenbacher, Cecelia M. | Finzi, Adrien C. | Rotjan, Randi D. | Novak, Alyssa B.
Microplastics have been discovered ubiquitously in marine environments. While their accumulation is noted in seagrass ecosystems, little attention has yet been given to microplastic impacts on seagrass plants and their associated epiphytic and sediment communities. We initiate this discussion by synthesizing the potential impacts microplastics have on relevant seagrass plant, epiphyte, and sediment processes and functions. We suggest that microplastics may harm epiphytes and seagrasses via impalement and light/gas blockage, and increase local concentrations of toxins, causing a disruption in metabolic processes. Further, microplastics may alter nutrient cycling by inhibiting dinitrogen fixation by diazotrophs, preventing microbial processes, and reducing root nutrient uptake. They may also harm seagrass sediment communities via sediment characteristic alteration and organism complications associated with ingestion. All impacts will be exacerbated by the high trapping efficiency of seagrasses. As microplastics become a permanent and increasing member of seagrass ecosystems it will be pertinent to direct future research towards understanding the extent microplastics impact seagrass ecosystems.
Afficher plus [+] Moins [-]Rhizobia population was favoured during in situ phytoremediation of vanadium-titanium magnetite mine tailings dam using Pongamia pinnata Texte intégral
2019
Yu, Xiumei | Kang, Xia | Li, Yanmei | Cui, Yongliang | Tu, Weiguo | Shen, Tian | Yan, Min | Gu, Yunfu | Zou, Likou | Ma, Menggen | Xiang, Quanju | Zhao, Ke | Liang, Yueyang | Zhang, Xiaoping | Chen, Qiang
Mine tailings contain toxic metals and can lead to serious pollutions of soil environment. Phytoremediation using legumes has been regarded as an eco-friendly way for the rehabilitation of tailings-laden lands but little is known about the changes of microbial structure during the process. In the present study, we monitored the dynamic change of microbiota in the rhizosphere of Pongamia pinnata during a 2-year on-site remediation of vanadium-titanium magnetite tailings. After remediation, overall soil health conditions were significantly improved as increased available N and P contents and enzyme activities were discovered. There was also an increase of microbial carbon and nitrogen contents. The Illumina sequencing technique revealed that the abundance of taxa under Proteobacteria was increased and rhizobia-related OTUs were preferentially enriched. A significant difference was discovered for sample groups before and after remediation. Rhizobium and Nordella were identified as the keystone taxa at genus rank. Functional predictions indicated that nitrogen fixation was enhanced, corresponding well with qPCR results which showed a significant increase of nifH gene copy numbers by the 2nd year. Our findings for the first time elucidated that legume phytoremediation can effectively cause microbial communities to shift in favour of rhizobia in heavy metal contaminated soil.
Afficher plus [+] Moins [-]Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin: Impacts on biofertilization Texte intégral
2018
Gomes, Marcelo Pedrosa | de Brito, Júlio César Moreira | Carvalho Carneiro, Marília Mércia Lima | Ribeiro da Cunha, Mariem Rodrigues | Garcia, Queila Souza | Figueredo, Cleber Cunha
We investigated the ability of the aquatic fern Azolla to take up ciprofloxacin (Cipro), as well as the effects of that antibiotic on the N-fixing process in plants grown in medium deprived (-N) or provided (+N) with nitrogen (N). Azolla was seen to accumulate Cipro at concentrations greater than 160 μg g⁻¹ dry weight when cultivated in 3.05 mg Cipro l⁻¹, indicating it as a candidate for Cipro recovery from water. Although Cipro was not seen to interfere with the heterocyst/vegetative cell ratios, the antibiotic promoted changes with carbon and nitrogen metabolism in plants. Decreased photosynthesis and nitrogenase activity, and altered plant's amino acid profile, with decreases in cell N concentrations, were observed. The removal of N from the growth medium accentuated the deleterious effects of Cipro, resulting in lower photosynthesis, N-fixation, and assimilation rates, and increased hydrogen peroxide accumulation. Our results shown that Cipro may constrain the use of Azolla as a biofertilizer species due to its interference with nitrogen fixation processes.
Afficher plus [+] Moins [-]Succession of microbial functional communities in response to a pilot-scale ethanol-blended fuel release throughout the plume life cycle Texte intégral
2015
Ma, Jie | Deng, Ye | Yuan, Tong | Zhou, Jizhong | Alvarez, Pedro J.J.
GeoChip, a comprehensive gene microarray, was used to examine changes in microbial functional gene structure throughout the 4-year life cycle of a pilot-scale ethanol blend plume, including 2-year continuous released followed by plume disappearance after source removal. Canonical correlation analysis (CCA) and Mantel tests showed that dissolved O2 (which was depleted within 5 days of initiating the release and rebounded 194 days after source removal) was the most influential environmental factor on community structure. Initially, the abundance of anaerobic BTEX degradation genes increased significantly while that of aerobic BTEX degradation genes decreased. Gene abundance for N fixation, nitrification, P utilization, sulfate reduction and S oxidation also increased, potentially changing associated biogeochemical cycle dynamics. After plume disappearance, most genes returned to pre-release abundance levels, but the final functional structure significantly differed from pre-release conditions. Overall, observed successions of functional structure reflected adaptive responses that were conducive to biodegradation of ethanol-blend releases.
Afficher plus [+] Moins [-]Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems Texte intégral
2012
Huang, Wenjuan | Zhou, Guoyi | Liu, Juxiu | Zhang, Deqiang | Xu, Zhihong | Liu, Shizhong
The effects of elevated carbon dioxide (CO₂) and nitrogen (N) addition on foliar N and phosphorus (P) stoichiometry were investigated in five native tree species (four non-N₂ fixers and one N₂ fixer) in open-top chambers in southern China from 2005 to 2009. The high foliar N:P ratios induced by high foliar N and low foliar P indicate that plants may be more limited by P than by N. The changes in foliar N:P ratios were largely determined by P dynamics rather than N under both elevated CO₂ and N addition. Foliar N:P ratios in the non-N₂ fixers showed some negative responses to elevated CO₂, while N addition reduced foliar N:P ratios in the N₂ fixer. The results suggest that N addition would facilitate the N₂ fixer rather than the non-N₂ fixers to regulate the stoichiometric balance under elevated CO₂.
Afficher plus [+] Moins [-]Effects of pyrene on the structure and metabolic function of soil microbial communities Texte intégral
2022
Zhang, Lilan | Yi, Meiling | Lu, Peili
The widely detected pyrene (PYR) is prone to accumulate and pose risks to the soil ecosystem. In this study, an aerobic closed microcosm was constructed to assess the effects of PYR at the environmental concentration (12.09 mg kg⁻¹) on the structure, interactions, and metabolism of carbon sources of soil microbial communities. The results found that half-life of PYR was 37 d and its aerobic biodegradation was mainly implemented by both Gram-negative and Gram-positive bacteria as revealed by the quantitative results. High-throughput sequencing based on 16 S rRNA and ITS genes showed that PYR exposure interfered more significantly with the diversity and abundance of the bacterial community than that of the fungal community. For bacteria, rare species were sensitive to PYR, while Gemmatimonadota, Gaiellales, and Planococcaceae involved in organic pollutants detoxification and degradation were tolerant of PYR stress. Co-occurrence network analysis demonstrated that PYR enhanced the intraspecific cooperation within the bacterial community and altered the patterns of trophic interaction in the fungal community. Furthermore, the keystone taxa and their topological roles were altered, potentially inducing functionality changes. Function annotation suggested PYR inhibited the nitrogen fixation and ammonia oxidation processes but stimulated methylotrophy and methanol oxidation, especially on day 7. For the metabolism, microbial communities accelerated the metabolism of nitrogenous carbon sources (e.g. amine) to meet the physiological needs under PYR stress. This study clarifies the impacts of PYR on the structure, metabolism, and potential N and C cycling functions of soil microbial communities, deepening the knowledge of the environmental risks of PYR.
Afficher plus [+] Moins [-]Response of soil microbial communities to engineered nanomaterials in presence of maize (Zea mays L.) plants Texte intégral
2020
Zhang, Wenhui | Jia, Xiaorong | Chen, Si | Wang, Jing | Ji, Rong | Zhao, Lijuan
With the intended application of engineered nanomaterials (ENMs) in agriculture, accurate assessment the effect of these ENMs on soil microbial communities is especially necessary. Here, maize plants were cultivated in soil amended by SiO₂, TiO₂, and Fe₃O₄ ENMs (100 mg kg⁻¹ soil) for four weeks. The impact of ENMs on bacterial community structure of the rhizosphere soil was investigated by using high-throughput sequencing. In addition, metabolites of maize rhizosphere soil were quantified by gas chromatography-mass spectrometry (GC-MS) based metabolomics. We found that the disturbance of ENMs on soil microbes are in the follow of Fe₃O₄>TiO₂>SiO₂. Exposure of Fe₃O₄ ENMs significantly reduced the abundance of nitrogen-fixation related bacteria Bradyrhizobiaceae (from 2.94% to 2.40%) and iron-redox bacteria Sediminibacterium (from 2.15% to 2.07%). Additionally, Fe₃O₄ ENMs significantly increased populations of Nocardioides (from 1.63% to 1.77%), Chitinophaga sancti (from 1.12% to 2.08%), Pantoea (from 1.31% to 2.22%), Rhizobiumand (from 1.41% to 1.74%) and Burkholderia-Paraburkholderia (from 1.50% to 2.09%), which are associated with carbon cycling and plant growth promoting. This study provides a perspective on the response of rhizosphere microbial community and low molecular weight metabolites to ENMs exposure, providing a comprehensive understanding of the environmental risk of ENMs.
Afficher plus [+] Moins [-]Railroad derived nitrogen and heavy metal pollution does not affect nitrogen fixation associated with mosses and lichens at a tundra site in Northern Sweden Texte intégral
2019
Goth, Astrid | Michelsen, Anders | Rousk, Kathrin
Traffic derived nitrogen (N) and heavy metal pollution is a well-known phenomenon, but little explored in otherwise pristine ecosystems such as subarctic tundra. Here, the main source of N input to the ecosystem is via N₂ fixation by moss- and lichen-associated bacteria. While inhibitory effects of N deposition on moss-associated N₂ fixation have been reported, we still lack understanding of the effects of traffic derived N and heavy metal deposition on this ecosystem function in an otherwise pristine setting. To test this, we established a distance gradient (0–1280 m) away from a metal pollution source -a railway transporting iron ore that passes through a subarctic birch forest. We assessed the effects of railway-derived pollution on N₂ fixation associated with two moss species Pleurozium schreberi, Hylocomium splendens and with the lichen Peltigera aphthosa. Deposition and availability of N and heavy metals (Fe, Cu, Zn, Pb) as well as the respective contents in moss, lichen and soil was assessed. While we found a steep gradient in metal concentration in moss, lichen and soil with distance away from the pollution source, N deposition did not change, and with that, we could not detect a distance gradient in moss- or lichen-associated N₂ fixation. Hence, our results indicate that N₂ fixing bacteria are either not inhibited by heavy metal deposition, or that they are protected within the moss carpet and lichen tissue.
Afficher plus [+] Moins [-]