Affiner votre recherche
Résultats 1-10 de 28
Soundscapes of Urban Parks in and around Bhubaneswar and Puri, Odisha, India: A Comparative Study
2018
Swain, Bijay | Goswami, Shreerup
Anthropogenic noise is debatably one of the most common threats to national parks' resources. Park visitors and workers generally suffer from adverse effects of noise from on- and off-road vehicles. The parks, studied here, are located in strictly urban areas, surrounded by streets with intense vehicle traffic. This study assesses the soundscape of urban parks in two cities of Odisha State, on the basis of acoustic field measurements and interviews. Noise descriptors in and around three different parks in Bhubaneswar and Puri cities have been measured and analyzed. A field experiment has been conducted with 330 participants in three parks, representing urban natural environment. The questionnaire comprised identification of the interviewee, characteristics of the user's profile in terms of his/her use of the park, and aspects of individual’s perception of the soundscape and environmental quality of the park. Positive correlation has been established among the noise levels of these three parks. The present study reveals that the acoustic sound levels of all the investigated parks are more than 50 dB (A) [permissible limit, established by Central Pollution Control Board (CPCB) for green parks]. Considering the urban elements and acoustical characteristics, it can be concluded that all the parks are affected by several factors such as urban planning, land use, main traffic routes, type of public transportation, and its internal sounds.
Afficher plus [+] Moins [-]Impacts of changes in environmental exposures and health behaviours due to the COVID-19 pandemic on cardiovascular and mental health: A comparison of Barcelona, Vienna, and Stockholm
2022
Koch, Sarah | Khomenko, Sasha | Cirach, Marta | Ubalde-Lopez, Mònica | Baclet, Sacha | Daher, Carolyn | Hidalgo, Laura | Lõhmus, Mare | Rizzuto, Debora | Rumpler, Romain | Susilo, Yusak | Venkataraman, Siddharth | Wegener, Sandra | Wellenius, Gregory A. | Woodcock, Jim | Nieuwenhuijsen, Mark
Responses to COVID-19 altered environmental exposures and health behaviours associated with non-communicable diseases. We aimed to (1) quantify changes in nitrogen dioxide (NO₂), noise, physical activity, and greenspace visits associated with COVID-19 policies in the spring of 2020 in Barcelona (Spain), Vienna (Austria), and Stockholm (Sweden), and (2) estimated the number of additional and prevented diagnoses of myocardial infarction (MI), stroke, depression, and anxiety based on these changes. We calculated differences in NO₂, noise, physical activity, and greenspace visits between pre-pandemic (baseline) and pandemic (counterfactual) levels. With two counterfactual scenarios, we distinguished between Acute Period (March 15th – April 26th, 2020) and Deconfinement Period (May 2nd – June 30th, 2020) assuming counterfactual scenarios were extended for 12 months. Relative risks for each exposure difference were estimated with exposure-risk functions. In the Acute Period, reductions in NO₂ (range of change from −16.9 μg/m³ to −1.1 μg/m³), noise (from −5 dB(A) to −2 dB(A)), physical activity (from −659 MET*min/wk to −183 MET*min/wk) and greenspace visits (from −20.2 h/m to 1.1 h/m) were largest in Barcelona and smallest in Stockholm. In the Deconfinement Period, NO₂ (from −13.9 μg/m³ to −3.1 μg/m³), noise (from −3 dB(A) to −1 dB(A)), and physical activity levels (from −524 MET*min/wk to −83 MET*min/wk) remained below pre-pandemic levels in all cities. Greatest impacts were caused by physical activity reductions. If physical activity levels in Barcelona remained at Acute Period levels, increases in annual diagnoses for MI (mean: 572 (95% CI: 224, 943)), stroke (585 (6, 1156)), depression (7903 (5202, 10,936)), and anxiety (16,677 (926, 27,002)) would be anticipated. To decrease cardiovascular and mental health impacts, reductions in NO₂ and noise from the first COVID-19 surge should be sustained, but without reducing physical activity. Focusing on cities’ connectivity that promotes active transportation and reduces motor vehicle use assists in achieving this goal.
Afficher plus [+] Moins [-]Effects of co-exposure to 900 MHz radiofrequency electromagnetic fields and high-level noise on sleep, weight, and food intake parameters in juvenile rats
2020
Bosquillon de Jenlis, Aymar | Del Vecchio, Flavia | Delanaud, Stéphane | Bach, Véronique | Pelletier, Amandine
Electrohypersensitive people attribute various symptoms to exposure of radiofrequency electromagnetic fields (RF-EMF); sleep disturbance is the most frequently cited. However, laboratory experiments have yielded conflicting results regarding sleep alterations. Our hypothesis was that exposure to RF-EMF alone would lead to slight or non-significant effects but that co-exposure to RF-EMFs and other environmental constraints (such as noise) would lead to significant effects.3-week-old male Wistar rats (4 groups, n = 12 per group) were exposed for 5 weeks to continuous RF-EMF (900 MHz, 1.8 V/m, SAR = 30 mW/kg) in the presence or absence of high-level noise (87.5 dB, 50–20000 Hz) during the rest period. After 5 weeks of exposure, sleep (24 h recording), food and water intakes, and body weight were recorded with or without RF-EMF and/or noise. At the end of this recording period, sleep was scored during the 1 h resttime in the absence of noise and of RF-EMF exposure.Exposure to RF-EMF and/or noise was associated with body weight gain, with hyperphagia in the noise-only and RF-EMF + noise groups and hypophagia in the RF-EMF-only group. Sleep parameters recording over 24 h highlighted a higher frequency of active wakefulness in the RF-EMF-only group and a lower non-rapid eye movement/rapid eye movement sleep ratio during the active period in the noise-only group. There were no differences in sleep duration in either group. During the 1-h, constraint-free sleep recording, sleep rebound was observed in the noise-only group but not in the RF-EMF-only and RF-EMF + noise groups.Our study showed effects of RF-EMF, regardless of whether or not the animals were also exposed to noise. However, the RF-EMF + noise group presented no exacerbation of those effects. Our results did not support the hypothesis whereby the effects of RF-EMF on physiological functions studied are only visible in animals exposed to both noise and RF-EMF.
Afficher plus [+] Moins [-]Correlation of noise levels and particulate matter concentrations near two major freeways in Los Angeles, California
2014
Shu, Shi | Yang, Pu | Zhu, Yifang
Near-freeway environments are important from public health and environmental justice perspectives. This study investigated the spatial profile of and correlations between noise levels and particulate matter concentrations near two major freeways in Los Angeles, CA. Five minutes averages of A-weighted equivalent continuous sound level (LeqA), ultrafine particle (UFP) number concentrations, and fine particle (PM2.5) mass concentrations were measured concurrently at increasing distances from the freeways on four streets with or without sound wall. Under upwind conditions, UFP showed relatively low concentrations and no obvious gradient, while LeqA showed decay with increasing distance as it did under downwind conditions. Moderate correlations between LeqA and UFP were observed under downwind conditions on all four streets. The presence of a sound wall changed the linear relationship between LeqA and UFP. These data may be used to study the independent and synergistic health impacts of noise and air pollutants near roadways.
Afficher plus [+] Moins [-]Noise affects mate choice based on visual information via cross-sensory interference
2022
Zhu, Bicheng | Zhang, Haodi | Chen, Qinghua | He, Qiaoling | Zhao, Xiaomeng | Sun, Xiaoqian | Wang, Tongliang | Wang, Jichao | Cui, Jianguo
Animal communication is often hampered by noise interference. Noise masking has primarily been studied in terms of its unimodal effect on sound information provision and use, while little is known about its cross-modal effect and how animals weigh unimodal and multimodal courtship cues in noisy environments. Here, we examined the cross-modal effects of background noise on female visual perception of mate choice and female preference for multimodal displays (sound + vocal sac) in a species of treefrog. We tested female mate choices using audio/video playbacks in the presence and absence of noise (white noise band-filtered to match or mismatch female sensitive hearing range, heterospecific chorus). Surprisingly, multimodal displays do not improve receiver performance in noise. The heterospecific chorus and white noise band-filtered to match female sensitive hearing ranges, significantly reduced female responses to the attractive visual stimuli in addition to directly impairing auditory information use. Meanwhile, the cross-modal impacts of background noise are influenced to some extent by whether the noise band matches female sensitive hearing range and the difficulty of distinguishing tasks. Our results add to the evidence for cross-modal effects of noise and are the first to demonstrate that background noise can disrupt female responses to visual information related to mate choice, which may reduce the communication efficiency of audiovisual signals in noisy environments and impose fitness consequences. This study has key ecological and evolutionary implications because it illustrates how noise influences mate choice in wildlife via cross-sensory interference, which is crucial in revealing the function and evolution of multimodal signals in noisy environments as well as informing evidence-based conservation strategies for forecasting and mitigating the multimodal impacts of noise interference on wildlife.
Afficher plus [+] Moins [-]Short-term association between personal exposure to noise and heart rate variability: The RECORD MultiSensor Study
2017
El Aarbaoui, Tarik | Méline, Julie | Brondeel, Ruben | Chaix, Basile
Studies revealed long-term associations between noise exposure and cardiovascular health, but the underlying short-term mechanisms remain uncertain.To explore the concomitant and lagged short-term associations between personal exposure to noise and heart rate variability (HRV) in a real life setting in the Île-de-France region.The RECORD MultiSensor Study collected between July 2014 and June 2015 noise and heart rate data for 75 participants, aged 34–74 years, in their living environments for 7 days using a personal dosimeter and electrocardiography (ECG) sensor on the chest. HRV parameters and noise levels were calculated for 5-min windows. Short-term relationships between noise level and log-transformed HRV parameters were assessed using mixed effects models with a random intercept for participants and a temporal autocorrelation structure, adjusted for heart rate, physical activity (accelerometry), and short-term trends.An increase by one dB(A) of A-weighted equivalent sound pressure level (Leq) was associated with a 0.97% concomitant increase of the Standard deviation of normal to normal intervals (SDNN) (95% CI: 0.92, 1.02), of 2.08% of the Low frequency band power (LF) (95% CI: 1.97, 2.18), of 1.30% of the High frequency band power (HF) (95% CI: 1.17, 1.43), and of 1.16% of the LF/HF ratio (95% CI: 1.10, 1.23). The analysis of lagged exposures to noise adjusted for the concomitant exposure illustrates the dynamic of recovery of the autonomic nervous system. Non-linear associations were documented with all HRV parameters with the exception of HF. Piecewise regression revealed that the association was almost 6 times stronger below than above 65 Leq dB(A) for the SDNN and LF/HF ratio.Personal noise exposure was found to be related to a concomitant increase of the overall HRV, with evidence of imbalance of the autonomic nervous system towards sympathetic activity, a pathway to increased cardiovascular morbidity and mortality.
Afficher plus [+] Moins [-]Multisensory pollution: Artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (Parus major)
2020
Dominoni, Davide | Smit, Judith A.H. | Visser, Marcel E. | Halfwerk, Wouter
Urbanisation is increasing globally at a rapid pace. Consequently, wild species face novel environmental stressors associated with urban sprawl, such as artificial light at night and noise. These stressors have pervasive effects on the behaviour and physiology of many species. Most studies have singled out the impact of just one of these stressors, while in the real world they are likely to co-occur both temporally and spatially, and we thus lack a clear understanding of the combined effect of anthropogenic stressors on wild species. Here, we experimentally exposed captive male great tits (Parus major) to artificial light at night and 24 h noise in a fully factorial experiment. We then measured the effect of both these stressors on their own and their combination on the amount and timing of activity patterns. We found that both light and noise affected activity patterns when presented alone, but in opposite ways: light increased activity, particularly at night, while noise reduced it, particularly during the day. When the two stressors were combined, we found a synergistic effect on the total activity and the nighttime activity, but an antagonistic effect on daytime activity. The significant interaction between noise and light treatment also differed among forest and city birds. Indeed, we detected a significant interactive effect on light and noise on daytime, nighttime, dusktime and offset of activity of urban birds, but not of forest birds. These results suggest that both artificial light at night and anthropogenic noise can drive changes in activity patterns, but that the specific impacts depend on the habitat of origin. Furthermore, our results demonstrate that co-occurring exposure to noise and light can lead to a stronger impact at night than predicted from the additive effects and thus that multisensory pollution may be a considerable threat for wildlife.
Afficher plus [+] Moins [-]Exposure to environmental noise and risk for male infertility: A population-based cohort study
2017
Min, Kyoung-Bok | Min, Chin-yŏng
Noise is associated with poor reproductive health. A number of animal studies have suggested the possible effects of exposure to high noise levels on fertility; to date, a little such research has been performed on humans.We examined an association between daytime and nocturnal noise exposures over four years (2002–2005) and subsequent male infertility.We used the National Health Insurance Service-National Sample Cohort (2002–2013), a population-wide health insurance claims dataset. A total of 206,492 males of reproductive age (20–59 years) with no history of congenital malformations were followed up for an 8-year period (2006–2013). Male infertility was defined as per ICD-10 code N46. Data on noise exposure was obtained from the National Noise Information System. Exposure levels of daytime and night time noise were extrapolated using geographic information systems and collated with the subjects' administrative district code, and individual exposure levels assigned.During the study period, 3293 (1.6%) had a diagnosis of infertility. Although there was no association of infertility with 1-dB increments in noise exposure, a non-linear dose-response relationship was observed between infertility and quartiles of daytime and night time noise after adjustment for confounding variables (i.e., age, income, residential area, exercise, smoking, alcohol drinking, blood sugar, body mass index, medical histories, and particulate pollution). Based on WHO criteria, adjusted odds for infertility were significantly increased (OR = 1.14; 95% CI, 1.05–1.23) in males exposed to night time noise ≥ 55 dB.We found a significant association between exposure to environmental noise for four years and the subsequent incidence of male infertility, suggesting long-term exposure to noise has a role in pathogenesis of male infertility.
Afficher plus [+] Moins [-]Human exposure to environmental health concern by types of urban environment: The case of Tel Aviv
2016
Shnell, Itzhak | Potchter, Oded | Yaakov, Yaron | Epstein, Yoram
This study classifies urban environments into types characterized by different exposure to environmental risk factors measured by general sense of discomfort and Heart Rate Variability (HRV). We hypothesize that a set of environmental factors (micro-climatic, CO, noise and individual heart rate) that were measured simultaneously in random locations can provide a better understanding of the distribution of human exposure to environmental loads throughout the urban space than results calculated based on measurements from close fixed stations. We measured micro-climatic and thermal load, CO and noise, individual Heart Rate, Subjective Social Load and Sense of Discomfort (SD) were tested by questionnaire survey.The results demonstrate significant differences in exposure to environmental factors among 8 types of urban environments. It appears that noise and social load are the more significant environmental factors to enhance health risks and general sense of discomfort.
Afficher plus [+] Moins [-]