Affiner votre recherche
Résultats 1-10 de 45
The downside of copper pesticides: An earthworm's perspective
2024
Schoffer, Jorge, Tomás | Solari, Fiamma | Petit-Dit-Grézériat, Lucas | Pelosi, Céline | Ginocchio, Rosanna | Yáñez, Carolina | Mazuela, Pilar | Neaman, Alexander | Pontificia Universidad Católica de Chile (UC) | Center of applied ecology & sustainability (CAPES) ; Facultad de ciencias biologicas [Santiago] ; Pontificia Universidad Católica de Chile (UC)-Pontificia Universidad Católica de Chile (UC) | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Valparaiso University | Universidad de Tarapaca
International audience | Correction to: Environmental Science and Pollution Research https://doi.org/10.1007/s11356-024-32078-7The correct given name of the 2nd Author is Fiamma.The widespread use of copper-based pesticides, while effective in controlling plant diseases, has been identified as a major source of copper contamination in soils. This raises concerns about potential adverse effects on earthworms, key players in soil health and ecosystem function. To inform sustainable pesticide practices, this study aimed to establish copper toxicity thresholds for earthworm avoidance in agricultural soils impacted by copper-based pesticides. We collected 40 topsoil samples (0-5 cm) from orchards and vineyards in the O'Higgins Region of central Chile, and 10 additional soils under native vegetation as background references. A standardized avoidance bioassay using Eisenia fetida assessed the impact of copper-based pesticides on the soils. Total copper concentrations ranged between 23 and 566 mg kg-1, with observed toxic effects on earthworms in certain soils. The effective concentration at 50% (EC50) for total soil copper, determined by Eisenia fetida's avoidance response, was 240 mg kg-1, with a 95% confidence interval of 193-341 mg kg-1. We further compared our EC50 values with existing data from agricultural soils impacted by mining activities. Interestingly, the results revealed a remarkable similarity between the thresholds for earthworm avoidance, regardless of the source of copper contamination. This observation underscores the universality of copper toxicity in agricultural ecosystems and its potential impact on soil biota. This study provides novel insights into copper toxicity thresholds for earthworms in real-world, pesticide-contaminated soils.
Afficher plus [+] Moins [-]The downside of copper pesticides: An earthworm's perspective
2024
Schoffer, Jorge Tomás | Solari, Fiama | Petit-Dit-Grézériat, Lucas | Pelosi, Céline | Ginocchio, Rosanna | Yáñez, Carolina | Mazuela, Pilar | Neaman, Alexander | Pontificia Universidad Católica de Chile (UC) | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Valparaiso University | Universidad de Tarapaca
A Correction to this article was published on 30 January 2024 https://doi.org/10.1007/s11356-024-32246-9 | International audience | The widespread use of copper-based pesticides, while effective in controlling plant diseases, has been identified as a major source of copper contamination in soils. This raises concerns about potential adverse effects on earthworms, key players in soil health and ecosystem function. To inform sustainable pesticide practices, this study aimed to establish copper toxicity thresholds for earthworm avoidance in agricultural soils impacted by copper-based pesticides. We collected 40 topsoil samples (0-5 cm) from orchards and vineyards in the O'Higgins Region of central Chile, and 10 additional soils under native vegetation as background references. A standardized avoidance bioassay using Eisenia fetida assessed the impact of copper-based pesticides on the soils. Total copper concentrations ranged between 23 and 566 mg kg -1 , with observed toxic effects on earthworms in certain soils. The effective concentration at 50% (EC 50 ) for total soil copper, determined by Eisenia fetida's avoidance response, was 240 mg kg -1 , with a 95% confidence interval of 193-341 mg kg -1 . We further compared our EC 50 values with existing data from agricultural soils impacted by mining activities. Interestingly, the results revealed a remarkable similarity between the thresholds for earthworm avoidance, regardless of the source of copper contamination. This observation underscores the universality of copper toxicity in agricultural ecosystems and its potential impact on soil biota. This study provides novel insights into copper toxicity thresholds for earthworms in real-world, pesticide-contaminated soils.
Afficher plus [+] Moins [-]Biochar significantly reduced fumigant emissions and benefited germination and plant growth under field conditions
2022
Wang, Qiuxia | Gao, Suduan | Wang, Dong | Cao, Aocheng
Soil fumigation continues to play an important role in soil disinfection, but tools to significantly reduce emissions while providing environmental benefits (e.g., biochar) are lacking. The objective of this study was to determine the effects of biochar products on fumigant 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions, their distribution and persistence in soil, nematode control, and potential toxicity to plants in a field trial. Treatments included three biochar products [two derived from almond shells (ASB) at either 550 or 900 °C pyrolysis temperature and one from coconut shells (CSB) at 550 °C] at 30 and 60 t ha⁻¹, a surface covering with a low permeability film (TIF), and no surface covering (control). A mixture of 1,3-D (∼65%) and CP (∼35%) was injected to ∼60 cm soil depth at a combined rate of 640 kg ha⁻¹. All biochar treatments significantly reduced emissions by 38–100% compared to the control. The ASB (900 °C) at both rates reduced emissions as effectively as the TIF (by 99–100%). Both fumigant emission reduction and residue in surface soil were positively correlated with biochar's adsorption capacity while cucumber germination rate and dry biomass were negatively correlated with residual fumigant concentrations in surface soil. This research demonstrated the potential and benefits of using biochar produced from local orchard feedstocks to control fumigant emissions. Additional research is needed to maximize the benefits of biochar on fumigant emission reductions without impacting plant growth.
Afficher plus [+] Moins [-]Dynamics in imidacloprid sorption related to changes of soil organic matter content and quality along a 20-year cultivation chronosequence of citrus orchards
2021
Zheng, Taihui | Hu, Tong | Zhang, Jie | Tang, Chongjun | Duan, Jian | Song, Yuejun | Zhang, Qin
The on-going and extensive use of neonicotinoids occur in orchards. However, it is still unknown whether and how orchard management affects soil properties, especially the contents and structure of soil organic matter during orchard development, and their further influences on neonicotinoid persistence. Here, surface soil samples were collected from the citrus orchards with different cultivation ages (1, 10, 14, and 20 years), and their physicochemical properties were determined. Changes in the chemical structure of soil organic matter (SOM) were furtherly examined using solid-state CP/TOSS ¹³C NMR. Then, the sorption isotherms of imidacloprid in these soils were investigated. The sorption coefficient (Kd) of imidacloprid at Cₑ of 0.05 mg/L in the orchard soils increased by 19.4–23.3%, along a 20-year chronosequence of cultivation, which should be mainly ascribed to the increase of SOM. However, the organic carbon-normalized sorption coefficient (Kₒc, sorption per unit mass of OM) of imidacloprid declined with increasing cultivation ages. Moreover, the polar and aliphatic domains of SOM had a significantly positive relation to the Kₒc of imidacloprid, suggesting its key role in governing imidacloprid sorption. The results highlighted that reasonable management measures could be adopted to control the occurrence and fate of neonicotinoids in soils, mainly by affecting the content and quality of SOM.
Afficher plus [+] Moins [-]Effects of land use and rainfall on sequestration of veterinary antibiotics in soils at the hillslope scale
2020
Zhao, Fangkai | Chen, Liding | Yang, Lei | Sun, Long | Li, Shoujuan | Li, Min | Feng, Qingyu
Veterinary antibiotics have been detected as contaminants of emerging concern in soil environment worldwide. Animal manure is frequently applied to agricultural fields to improve soil fertility, which can result in introducing large amount of antibiotics into soil environment. However, few attempts have been made to identify the spatial and temporal dynamics of veterinary antibiotics in soil at the hillslope scale with different land uses. This study was performed to explore the pattern and variability of veterinary antibiotics in the soil in response to rainfall events. Results showed that higher concentrations of veterinary antibiotics were generally found in cropland (292.6 ± 280.1 ng/g) and orchard (228.1 ± 230.5 ng/g) than in forestland (13.5 ± 9.9 ng/g). After rainfall events, antibiotics accumulated in the soil at the positions where manure was applied, especially under high-intensity rainfall conditions. However, the antibiotic concentration in soil slightly increased from the top to the bottom of hills, thus indicating the restricted contribution of runoff to antibiotic transport, especially under low-intensity rainfall conditions. In addition, most antibiotics were sequestered in the surface soil (0–10 cm), and higher antibiotic concentrations were observed in deep soil (20–40 cm) in cropland than orchard. The soil aggregate, organic matter, and clay content played important roles in antibiotic sequestration along the hillslope subject to low-, medium-, and large-amount rainfall events, respectively. This study identified that land use, rainfall conditions, and soil structures jointly affect the spatial and temporal variability of antibiotics in soils on hillslopes.
Afficher plus [+] Moins [-]Land-use type affects N2O production pathways in subtropical acidic soils
2018
Zhang, Yushu | Ding, Hong | Zheng, Xiangzhou | Ren, Xiangyun | Cardenas, L. (Laura) | Carswell, Alison | Misselbrook, T. (Tom)
The change in land-use from woodland to crop production leads to increased nitrous oxide (N2O) emissions. An understanding of the main N2O sources in soils under a particular land can be a useful tool in developing mitigation strategies. To better understand the effect of land-use on N2O emissions, soils were collected from 5 different land-uses in southeast China: shrub land (SB), eucalyptus plantation (ET), sweet potato farmland (SP), citrus orchard (CO) and vegetable growing farmland (VE). A stable isotope experiment was conducted incubating soils from the different land use types at 60% water holding capacity (WHC), using 15NH4NO3 and NH415NO3 to determine the dominant N2O production pathway for the different land-uses. The average N2O emission rates for VE, CO and SP were 5.30, 4.23 and 3.36 μg N kg−1 dry soil d−1, greater than for SB and ET at 0.98 and 1.10 μg N kg−1 dry soil d−1, respectively. N2O production was dominated by heterotrophic nitrification for SB and ET, accounting for 51 and 50% of N2O emissions, respectively. However, heterotrophic nitrification was negligible (<8%) in SP, CO and VE, where autotrophic nitrification was a primary driver of N2O production, accounting for 44, 45 and 66% for SP, CO and VE, respectively. Denitrification was also an important pathway of N2O production across all land-uses, accounting for 35, 35, 49, 52 and 32% for SB, ET, SP, CO and VE respectively. Average N2O emission rates via autotrophic nitrification, denitrification and heterotrophic nitrification increased significantly with gross nitrification rates, NO3− contents and C:N ratios respectively, indicating that these were important factors in the N2O production pathways for these soils. These results contribute to our understanding and ability to predict N2O emissions from different land-uses in subtropical acidic soils and in developing potential mitigation strategies.
Afficher plus [+] Moins [-]Bioaccessibility of Ba, Cu, Pb, and Zn in urban garden and orchard soils
2016
Cai, Meifang | McBride, Murray B. | Li, Kaiming
Exposure of young children to toxic metals in urban environments is largely due to soil and dust ingestion. Soil particle size distribution and concentrations of toxic metals in different particle sizes are important risk factors in addition to bioaccessibility of these metals in the particles. Analysis of particle size distribution and metals concentrations for 13 soils, 12 sampled from urban gardens and 1 from orchard found that fine particles (<105 μm) comprised from 22 to 66% by weight of the tested soils, with Ba, Cu, Pb and Zn generally at higher concentrations in the finer particles. However, metal bioaccessibility was generally lower in finer particles, a trend most pronounced for Ba and Pb. Gastric was higher than gastrointestinal bioaccessibility for all metals except Cu. The lower bioaccessibility of Pb in urban garden soils compared to orchard soil is attributable to the higher organic matter content of the garden soils.
Afficher plus [+] Moins [-]Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China
2014
Li, Lianzhen | Wu, Huifeng | van Gestel, Cornelis A.M. | Peijnenburg, Willie J.G.M. | Allen, Herbert E.
The bioavailability of Cu, Zn, Pb and Cd from field-aged orchard soils in a certified fruit plantation area of the Northeast Jiaodong Peninsula in China was assessed using bioassays with earthworms (Eisenia fetida) and chemical assays. Soil acidity increased with increasing fruit cultivation periods with a lowest pH of 4.34. Metals were enriched in topsoils after decades of horticultural cultivation, with highest concentrations of Cu (132 kg−1) and Zn (168 mg kg−1) in old apple orchards and Pb (73 mg kg−1) and Cd (0.57 mg kg−1) in vineyard soil. Earthworm tissue concentrations of Cu and Pb significantly correlated with 0.01 M CaCl2-extractable soil concentrations (R2 = 0.70, p < 0.001 for Cu; R2 = 0.58, p < 0.01 for Pb). Because of the increased bioavailability, regular monitoring of soil conditions in old orchards and vineyards is recommended, and soil metal guidelines need reevaluation to afford appropriate environmental protection under acidifying conditions.
Afficher plus [+] Moins [-]Microplastics trapped in soil aggregates of different land-use types: A case study of Loess Plateau terraces, China
2022
Cheung, Joys H. Y. | Huiyan, | An, Shaoshan | Zhao, Junfeng | Xiao, Li | Li, Haohao | Huang, Qian
Land-use types may affect soil aggregates' stability and organic carbon (OC) distribution characteristics, but little is known about the effects on the distribution characteristics of microplastics (MPs) in the aggregates. Hence, the MPs abundance of soil aggregates and analyzed aggregates’ stability, composition, and OC content from two soil layers of four land-use types in Gansu Province were investigated in this study. The total MPs abundances in woodland, farmland (wheat, maize, and potato), orchard, and intercropping (potato + apple orchard) of top and deep soils were 1383.3 and 1477.9, 1324.6 and 931.1, 1757.1 and 1930.9, 2127.2 and 1998.0, 1335.9 and 886.7, and 1777.5 and 1683.3 items kg⁻¹, respectively. The largest MPs abundance was detected in the >5 mm fractions of topsoil in potato (3077.3 items kg⁻¹), followed by maize (3044.7 items kg⁻¹) and intercropping (2718.4 items kg⁻¹). In the topsoil, the total MPs abundance increased significantly with decreasing aggregate stability, and also was positively correlated with bulk density, microbial biomass, and total nitrogen contents of bulk soil. Summarizing, the abundance distribution of MPs correlates with the soil aggregate characteristics of the different land-use types.
Afficher plus [+] Moins [-]An integrated method for source apportionment of heavy metal(loid)s in agricultural soils and model uncertainty analysis
2021
Wang, Yuntao | Guo, Guanghui | Zhang, Degang | Lei, Mei
Elevated concentrations of heavy metals in agricultural soils threatening ecological security and the quality of agricultural products, and apportion their sources accurately is still a challenging task. Multivariate statistical analysis, GIS mapping, Pb isotopic ratio analysis (IRA), and positive matrix factorization (PMF) were integrated to apportion the potential sources of heavy metal(loid)s of orchard soil in Karst-regions. Study region soils were moderately contaminated by Cd. Obvious enrichment and moderate contamination level of Cd were found in study region surface soils, followed by As, Zn, and Pb. Correlation analysis (CA) and principal component analysis (PCA) indicated Ba, Co, Cr, Ni, V were mainly from natural sources, while As, Cd, Cu, Pb, Zn were derived from two kinds of anthropogenic sources. Based on Pb isotope composition, atmospheric deposition and livestock manure were the main sources of soil Pb accumulation. Further source identification and quantification results with PMF model and GIS mapping revealed that soil parent materials (46.44%) accounted for largest contribution to the soil heavy metal(loid)s, followed by fertilizer application (31.37%) and mixed source (industrial activity and manure, 22.19%). Uncertainty analysis indicated that the three-factors solution of PMF model was an optimal explanation and the heavy metal(loid) with lower percentage contributions had higher uncertainty. This study results can help to illustrate the sources of heavy metals more accurately in orchard agricultural soils with a clear expected future for further applications.
Afficher plus [+] Moins [-]