Affiner votre recherche
Résultats 1-10 de 436
Un-biodegradable and biodegradable plastic sheets modify the soil properties after six months since their applications
2022
Santini, G. | Acconcia, S. | Napoletano, M. | Memoli, V. | Santorufo, L. | Maisto, G.
Nowadays, microplastics represent emergent pollutants in terrestrial ecosystems that exert impacts on soil properties, affecting key soil ecological functions. In agroecosystems, plastic mulching is one of the main sources of plastic residues in soils. The present research aimed to evaluate the effects of two types of plastic sheets (un-biodegradable and biodegradable) on soil abiotic (pH, water content, concentrations of organic and total carbon, and total nitrogen) and biotic (respiration, and activities of hydrolase, dehydrogenase, β-glucosidase and urease) properties, and on phytotoxicity (germination index of Sorghum saccharatum L. and Lepidium sativum L.). Results revealed that soil properties were mostly affected by exposure time to plastics rather than the kind (un-biodegradable and biodegradable) of plastics. After six months since mesocosm setting up, the presence of un-biodegradable plastic sheets significantly decreased soil pH, respiration and dehydrogenase activity and increased total and organic carbon concentrations, and toxicity highlighted by S. saccharatum L. Instead, the presence of biodegradable plastic sheets significantly decreased dehydrogenase activity and increased organic carbon concentrations. An overall temporal improvement of the investigated properties in soils covered by biodegradable plastic sheets occurred.
Afficher plus [+] Moins [-]Microplastics trapped in soil aggregates of different land-use types: A case study of Loess Plateau terraces, China
2022
Cheung, Joys H. Y. | Huiyan, | An, Shaoshan | Zhao, Junfeng | Xiao, Li | Li, Haohao | Huang, Qian
Land-use types may affect soil aggregates' stability and organic carbon (OC) distribution characteristics, but little is known about the effects on the distribution characteristics of microplastics (MPs) in the aggregates. Hence, the MPs abundance of soil aggregates and analyzed aggregates’ stability, composition, and OC content from two soil layers of four land-use types in Gansu Province were investigated in this study. The total MPs abundances in woodland, farmland (wheat, maize, and potato), orchard, and intercropping (potato + apple orchard) of top and deep soils were 1383.3 and 1477.9, 1324.6 and 931.1, 1757.1 and 1930.9, 2127.2 and 1998.0, 1335.9 and 886.7, and 1777.5 and 1683.3 items kg⁻¹, respectively. The largest MPs abundance was detected in the >5 mm fractions of topsoil in potato (3077.3 items kg⁻¹), followed by maize (3044.7 items kg⁻¹) and intercropping (2718.4 items kg⁻¹). In the topsoil, the total MPs abundance increased significantly with decreasing aggregate stability, and also was positively correlated with bulk density, microbial biomass, and total nitrogen contents of bulk soil. Summarizing, the abundance distribution of MPs correlates with the soil aggregate characteristics of the different land-use types.
Afficher plus [+] Moins [-]Impact of short-term control measures on air quality: A case study during the 7th Military World Games in central China
2022
Mao, Yao | Liu, Weijie | Hu, Tianpeng | Shi, Mingming | Cheng, Cheng | Zhan, Changlin | Zhang, Li | Zhang, Jiaquan | Sweetman, A. J. (Andrew J.) | Jones, K. C. (Kevin C.) | Xing, Xinli | Qi, Shihua
The 7th Military World Games held in Wuhan (WH) in Oct 2019 provided an opportunity to clarify the impact of short-term control measures on air quality. Fine particulate matters (PM₂.₅) were collected in WH, Huangshi (HS), and Huanggang (HG) during the control (Oct 13–28, 2019) and non-control periods (Oct 29- Nov 5, 2019). The results showed that air quality was good during the control period, with the concentrations of PM₂.₅ and gaseous pollutants being below the Grade Ⅱ of China Ambient Air Quality Standard. Concentrations of PM₂.₅ and its major chemical components in the control period were significantly lower than those in the non-control period, with reductions ranging from 17% (trace elements) to 46% (elemental carbon). However, higher contributions of secondary components such as SO₄²⁻, NO₃⁻, NH₄⁺ and secondary organic carbon (SOC) to PM₂.₅ were observed during the control period, suggesting the important role of secondary transformation. Potential source contribution function (PSCF) of PM₂.₅ showed that the main source regions were potentially located in surrounding cities Hubei Province, but regional transport can't be ignored. Six sources were identified by positive matrix factorization (PMF) for both control and non-control period. The contributions of combustion emissions and vehicle emissions were amplified in the control period, while the contribution of construction dust increased significantly when the control measures ended. Emission reductions contributed more to PM₂.₅ concentration decrease in WH (55%) than that in HS (51%) and HG (49%), which was consistent with the stricter control measures implemented in WH. These results indicated that short-term controls were effective at lowering PM₂.₅ concentration. However, the elevated contributions of secondary aerosols and the influence of regional transport on the study areas also need to be paid attention for air quality improvement in the future.
Afficher plus [+] Moins [-]Fine particles and pyrogenic carbon fractions regulate PAH partitioning and burial in a eutrophic shallow lake
2022
Ya, Miaolei | Wu, Yuling | Wang, Xinhong | Wei, Hengchen
Aquatic particles and organic carbon (OC) regulate the occurrence and transport of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) in water-suspended particle-sediment interfaces. Conventional studies on the mechanisms regulating the relationships between PAHs and total particles/OC have ignored micro-scale regulatory factors such as particle size and OC composition. Field research in the eutrophic shallow Lake Taihu, China, revealed that the fine particle fractions 2.7–10 μm in diameter had stronger PAH adsorption capacity and significantly regulated PAH particle size distribution and water-particle partitioning. Selective PAH biodegradation by planktonic microorganisms probably significantly weakened the capacity of the coarse fractions to regulate PAHs. OC fragments at different temperature gradients had markedly different influences on the particle size distribution of PAHs. High-temperature pyrogenic OC fractions (part of black carbon) were the principal OC regulatory factors for medium-to high-molecular-weight PAHs. However, the OC fragments did not directly affect the particle distribution of low-molecular-weight PAHs. During particle deposition and burial, microbial PAH utilization and efficiency probably regulated the burial potential of various hydrophobic PAH species. Biodegradation of relatively less hydrophobic PAHs with octanol-water partition coefficients (log Kₒw) < 5.8 showed an increasing trend with decreasing PAH hydrophobicity. Biological pump action of the relatively higher hydrophobic PAH species (log Kₒw > 5.8) showed a decreasing trend with increasing PAH hydrophobicity. The discoveries of the present work further clarified the mechanisms of PAH partitioning and burial in a eutrophic shallow lake and collectively provides a valuable reference for modeling the transport and dispersal mechanisms of hydrophobic, particle-bound organic contaminants in other aquatic ecosystems.
Afficher plus [+] Moins [-]Effect of photooxidation on size distribution, light absorption, and molecular compositions of smoke particles from rice straw combustion
2022
Zhao, Ranran | Zhang, Qixing | Xu, Xuezhe | Wang, Wenjia | Zhao, Weixiong | Zhang, Weijun | Zhang, Yongming
Organic aerosol (OA) emitted from biomass burning (BB) impacts air quality and global radiation balance. However, the comprehensive characterization of OA remains poorly understood because of the complex evolutionary behavior of OA in atmospheric processes. In this work, smoke particles were generated from rice straw combustion. The effect of OH radicals photooxidation on size distribution, light absorption, and molecular compositions of smoke particles was systematically investigated. The results showed that the median diameters of smoke particles increased by a factor of approximately 1.2 after photooxidation. In the particle compositions, although both non-polar fractions (n-hexane-soluble organic carbon, HSOC) and polar fractions (water-soluble organic carbon, WSOC) underwent photobleaching after aging, the photobleaching properties of HSOC (1.87–2.19) was always higher than that of WSOC (1.52–1.33). Besides, the light-absorbing properties of HSOC were higher than that of WSOC, showing a factor of approximately 1.75 times for mass absorption efficiency at 365 nm (MAE₃₆₅). Consequently, the simple forcing efficiency (SFE) caused by absorption showed that HSOC has higher radiation effects than WSOC. After photooxidation, the concentration of 16 PAHs in HSOC fractions significantly decreased by 15.3%–72.5%. In WSOC fractions, the content of CHO, CHONS, and CHOS compounds decreased slightly, while the content of CHON compounds increased. Meantime, the variations in molecular properties supported the decrease in light absorption of WSOC fractions. These results reveal the aging behavior of smoke particles, then stress the importance of non-polar organic fractions in particles, providing new insights into understanding the atmospheric pollution caused by BB smoke particles.
Afficher plus [+] Moins [-]Investigation of water-soluble organic constituents and their spatio-temporal heterogeneity over the Tibetan Plateau
2022
Niu, Hewen | Lu, Xixi | Zhang, Guotao | Sarangi, Chandan
Investigating the migration and transformation of carbonaceous and nitrogenous matter in the cryosphere areas is crucial for understanding global biogeochemical cycle and earth's climate system. However, water-soluble organic constituents and their transformation in multiple water bodies are barely investigated. Water-soluble organic carbon (WSOC) and organic nitrogen (WSON), and particulate black carbon (PBC) in multiple types of water bodies in eastern Tibetan Plateau (TP) cryosphere for the first time have been systematically investigated. Statistical results exhibited that from south to north and from east to west of this region, WSOC concentrations in alpine river runoff were gradually elevated. WSOC and nitrogenous matter in the alpine river runoff and precipitation in the glacier region presented distinct seasonal variations. WSON was the dominant component (63.4%) of water-soluble total nitrogen in precipitation over high-altitude southeastern TP cryosphere. Water-soluble carbonaceous matter dominated the carbon cycle in the TP cryosphere, but particulate carbonaceous matter in the alpine river runoff had a small fraction of the cryospheric carbon cycle. Analysis of optical properties illustrated that PBC had a much stronger light absorption ability (MAC-PBC: 2.28 ± 0.37 m² g⁻¹) than WSOC in the alpine river runoff (0.41 ± 0.26 m² g⁻¹). Ionic composition was dominated by SO₄²⁻, NO₃⁻, and NH₄⁺ (average: 45.13 ± 3.75%) in the snow of glaciers, implying important contribution of (fossil fuel) combustion sources over this region. The results of this study have essential implications for understanding the carbon and nitrogen cycles in high altitude cryosphere regions of the world. Future work should be performed based on more robust in-situ observations and measurements from multiple environmental medium over the cryosphere areas, to ensure ecological protection and high-quality development of the high mountain Asia.
Afficher plus [+] Moins [-]PM2.5 drives bacterial functions for carbon, nitrogen, and sulfur cycles in the atmosphere
2022
Liu, Huan | Hu, Zhichao | Zhou, Meng | Zhang, Hao | Zhang, Xiaole | Yue, Yang | Yao, Xiangwu | Wang, Jing | Xi, Chuanwu | Zheng, Ping | Xu, Xiangyang | Hu, Baolan
Airborne bacteria may absorb the substance from the atmospheric particles and play a role in biogeochemical cycling. However, these studies focused on a few culturable bacteria and the samples were usually collected from one site. The metabolic potential of a majority of airborne bacteria on a regional scale and their driving factors remain unknown. In this study, we collected particulates with aerodynamic diameter ≤2.5 μm (PM₂.₅) from 8 cities that represent different regions across China and analyzed the samples via high-throughput sequencing of 16S rRNA genes, quantitative polymerase chain reaction (qPCR) analysis, and functional database prediction. Based on the FAPROTAX database, 326 (80.69%), 191 (47.28%) and 45 (11.14%) bacterial genera are possible to conduct the pathways of carbon, nitrogen, and sulfur cycles, respectively. The pathway analysis indicated that airborne bacteria may lead to the decrease in organic carbon while the increase in ammonium and sulfate in PM₂.₅ samples, all of which are the important components of PM₂.₅. Among the 19 environmental factors studied including air pollutants, meteorological factors, and geographical conditions, PM₂.₅ concentration manifested the strongest correlations with the functional genes for the transformation of ammonium and sulfate. Moreover, the PM₂.₅ concentration rather than the sampling site will drive the distribution of functional genera. Thus, a bi-directional relationship between PM₂.₅ and bacterial metabolism is suggested. Our findings shed light on the potential bacterial pathway for the biogeochemical cycling in the atmosphere and the important role of PM₂.₅, offering a new perspective for atmospheric ecology and pollution control.
Afficher plus [+] Moins [-]Occurrence, spatial distribution, and partitioning behavior of marine lipophilic phycotoxins in the Pearl River Estuary, South China
2022
Li, Jing | Ruan, Yuefei | Wu, Rongben | Cui, Yongsheng | Shen, Jincan | Mak, Yim Ling | Wang, Qi | Zhang, Kai | Yan, Meng | Wu, Jiaxue | Lam, Paul K.S.
The occurrence, spatial distribution, and partitioning behavior of 17 marine lipophilic phycotoxins (MLPs) in surface and bottom seawater, particulate organic matter (POM), and surface sediment from the Pearl River Estuary (PRE) were investigated to understand current contamination and the potential risks to marine ecosystems in this region. Nine MLPs were detected, including azaspiracid1−3, gymnodimine, okadaic acid, dinophysistoxin 1−2, pectenotoxin2 (PTX2), and homoyessotoxin, with Σ₁₇MLP concentrations ranging 545–12,600 pg L⁻¹ and 619−8,800 pg L⁻¹ in surface and bottom seawater, respectively; 0–294 ng g⁻¹ and 0.307–300 ng g⁻¹ dry weight (dw) in surface and bottom POM, respectively; and 3.90–982 pg g⁻¹ dw in surface sediment. Lower Σ₁₇MLP levels in the seawater were found at the mouth of the PRE, and gradually increased with increasing distance offshore. According to the calculated partition coefficient, the affinity of MLPs for the aquatic environment components was as follows (from highest to lowest): POM > seawater > sediment. Overall, the distribution and migration of MLPs in the PRE may depend on partition coefficients, the organic carbon fraction, and environmental factors.
Afficher plus [+] Moins [-]Microbial processing of autochthonous organic matter controls the biodegradation of 17α-ethinylestradiol in lake sediments under anoxic conditions
2022
Bai, Leilei | Liu, Xin | Hua, Ke | Tian, Linqi | Wang, Changhui | Jiang, Helong
The decay of algal biomass and aquatic plants in freshwater lakes leads to the overproduction of autochthonous organic matter (OM) and the exhaustion of dissolved oxygen, impacting the microbial community and subsequent biodegradation of emerging contaminants in sediment. This study explored how the microbial processing of aquatic plant- and algal-derived OM (POM and AOM) mediates 17α-ethinylestradiol (EE2) biodegradation in the anoxic sediments of Lake Taihu in China. In four months of microcosm incubations, the increased concentrations of protein-like substances in AOM and POM exhibited temporary activation on microbial metabolic enzyme activity (fluorescein diacetate hydrolase and dehydrogenase) and significantly promoted the carbon mineralization with iron reduction (P < 0.001). These in turn increased the EE2 biodegradation efficiency to 77–90 ng g⁻¹ in the anoxic sediment. However, a higher EE2 biodegradation of 109 ng g⁻¹ was achieved with the humic acid augmentation containing more quinone-like compounds, showing a weaker substrate-priming effect but accelerated redox cycling of iron and organic substrates in the later period of incubation. The microbial analysis further revealed that the quinone-like compounds in OM were more closely associated with microbial electron transfer and strengthened their interspecies syntrophic cooperation favorable to contaminant biodegradation, even though the connective members exposed to protein-like components upregulated more functional genes related to organic carbon and xenobiotics metabolism and biodegradation. Our findings will help predict the fate of estrogens in various sedimentary environments under increasing eutrophication and further climate change scenarios.
Afficher plus [+] Moins [-]Fluvial CO2 and CH4 in a lowland agriculturally impacted river network: Importance of local and longitudinal controls
2022
Leng, Peifang | Li, Zhao | Zhang, Qiuying | Li, Fadong | Koschorreck, Matthias
Despite streams and rivers play a critical role as conduits of terrestrially produced organic carbon to the atmosphere, fluvial CO₂ and CH₄ are seldom integrated into regional carbon budgets. High spatial variability hinders our ability to understand how local and longitudinal controls affect underlying processes of riverine CO₂ and CH₄ and challenge the prediction and upscaling across large areas. Here, we conducted a survey of fluvial CO₂ and CH₄ concentrations spanning multiple stream orders within an agriculturally impacted region, the North China Plain. We explored the spatial patterns of fluvial CO₂ and CH₄ concentrations, and then examined whether catchment and network properties and water chemical parameters can explain the variations in both carbon gases. Streams and rivers were systematically supersaturated with CO₂ and CH₄ with the mean concentrations being 111 and 0.63 μmol L⁻¹, respectively. Spatial variability of both gases was regulated by network properties and catchment features. Fluvial CO₂ and CH₄ declined longitudinally and could be modeled as functions of stream order, dissolved oxygen, and water temperature. Both models explained about half of the variability and reflected longitudinal and local drivers simultaneously, albeit CO₂ was more local-influenced and CH₄ more longitudinal-influenced. Our empirical models in this work contribute to the upscaling and prediction of CO₂ and CH₄ emissions from streams and rivers and the understanding of proximal and remote controls on spatial patterns of both gases in agriculturally impacted regions.
Afficher plus [+] Moins [-]