Affiner votre recherche
Résultats 1-10 de 160
Occurrence and distribution of organophosphate flame retardants in seawater and sediment from coastal areas of the East China and Yellow Seas
2022
Fang, Lidan | Liu, Aifeng | Zheng, Minggang | Wang, Ling | Hua, Yi | Pan, Xin | Xu, Hongyan | Chen, Xiangfeng | Lin, Yongfeng
Organophosphates (OPEs) are manmade organic pollutants that are widely used as flame retardants, plasticizers, and antifoaming and hydraulic agents. In this study, seven OPEs in seawater and sediment from the Yellow Sea and East China Sea were determined to study the distribution and diffusion behavior, and to evaluate the environmental risks. The ΣOPEs in the seawater and sediments ranged from below the method detection limit (<MDL) to 497.40 ng/L and from < MDL to 66.50 ng/g dw, respectively. Tri-n-butyl phosphate (TnBP), tris-(1, 3-Dichloro-2-Propyl) phosphate (TDCPP), and tri-meta-cresyl phosphate (TmCP) were the dominant OPEs in the seawater and sediments. OPEs were mainly distributed in coastal areas and the South Yellow Sea, indicating that they are mainly affected by land-based pollution and ocean currents. Fugacity analysis shows that tri-para-cresyl phosphate (TpCP) was in a state of equilibrium, while TDCPP, TnBP, and TmCP other OPEs tended to diffuse from sediment to water. The diffusion behavior of OPEs is mainly affected by their chemical properties. Hazard quotient (HQ) values of TmCP and TpCP in sediment samples were >1.0, indicating high ecological risks to aquatic organisms.
Afficher plus [+] Moins [-]Associations between organophosphate esters concentrations and markers of liver function in US adolescents aged 12–19 years: A mixture analysis
2022
Li, Ruiqiang | Zhan, Wenqiang | Ren, Jingyi | Gao, Xian | Huang, Xin | Ma, Yuxia
Liver disease has become a growing health burden, and little is known about the impairment of liver function caused by exposure to organophosphate esters (OPEs) in adolescents aged 12–19 years in the United States. To investigate the relationship between urinary metabolites of OPEs including diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), bis(1-chloroethyl) phosphate (BCPP), bis(2-chloroethyl) phosphate (BCEP), and dibutyl phosphate (DBUP) and liver function in US adolescents aged 12–19 years. Liver function tests (LFTs) include aspartate aminotransferase (AST), albumin (ALB), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total bilirubin (TBIL), total protein (TP), and AST/ALT. Meanwhile, potential confounding and interaction effects were assessed. The study sample included 592 adolescents aged 12–19 from two consecutive NHANES cycles (2011–2012, 2013–2014). A composite statistical strategy combining traditional linear regression with advanced multi-pollutant models quantile based g-computation (QGC) and eXtreme Gradient Boosting (XGBoost) regression was used to analyze the joint effects of multiple OPEs on liver function indicators, and to describe the interaction between different OPEs in detail. 592 adolescent participants were 15 (14–17) years old, with similar numbers of males and females (304 vs. 288). The analysis results showed that (1) in the linear regression model, individual DPHP, BCEP exposure and ALP changes, BCEP and AST/ALT changes were positively associated. DPHP, BDCPP were negatively associated with TP changes. (2) The combined effects of various OPEs on ALB, ALT, ALP, GGT, TBIL, TP, and AST/ALT were statistically significant. (3) There is no potential interaction between different OPEs. Several OPEs and their combinations are closely related to the 8 LFT indicators. In addition, data suggest that exposure to OPEs in adolescents may be associated with liver damage. Due to limited evidence in the literature and potential limitations of the current study, our findings require more studies to confirm.
Afficher plus [+] Moins [-]Remodeling on adipocytic physiology of organophosphorus esters in mature adipocytes
2022
Liu, Ying | Le, Yifei | Xu, Mengting | Wang, Wanyue | Chen, Hang | Zhang, Quan | Wang, Cui
The emerging endocrine disruption chemicals organophosphate esters (OPEs) pose high risk of metabolic disruption. However, limited information is available on physiological disturbance of OPEs on adipose, a major endocrine and metabolic organ. In this study, physiological change was investigated after exposing 3T3-L1fully differentiated adipocytes to six OPEs at non-cytotoxic concentrations. We found two chlorinated-OPEs (tris-(2-chloro-1-(chloromethyl) ethyl) phosphate (TDCPP) and tris(2-chloroisopropyl) phosphate (TCPP)) and two alkyl-OPEs (tributyl phosphate (TBP) and tris (2-butoxyethyl) phosphate (TBEP)) induced inflammation-like adipokines (chemoattractant protein 1 and interleukin-6), respectively. Increment of insulin-resistance-related hormones (resistin and leptin) were observed under TDCPP, TCPP, and TBP exposure. Functional and mechanistic investigation revealed that all of the compounds inhibited lipolysis at basal level through dephosphorylated HSLˢᵉʳ⁵⁶³, the rate limiting enzyme of lipolysis. Triphenyl phosphate (TPhP), tricresyl phosphate (TCP), TDCPP, TBP and TBEP enhanced glucose uptake at both basal and insulin-stimulated status. We evidenced that impact was independent of the classical pIRSˢᵉʳ⁶³⁹/pAKTˢᵉʳ⁴⁷³ nor the insulin-independent AMPK pathway. The elevated mRNA of slc2a4 and its transcriptional factor LXRα may, at least partially, explain for the increase of glucose uptake. Given the focus within the endocrine disruption on glands, it would be prudent not to ignore endocrinal impact on adipocytes.
Afficher plus [+] Moins [-]Association of exposure to organophosphate esters with increased blood pressure in children and adolescents
2022
Hu, Liqin | Yu, Meng | Li, Yaping | Liu, Ling | Li, Xiang | Song, Lulu | Wang, Youjie | Mei, Surong
Organophosphate esters (OPEs) are widely added to various industrial and consumer products, and are mainly used as flame retardants and plasticizers. Existing epidemiological studies suggest that OPE exposure may be linked to increased blood pressure (BP) and hypertension risk in adults. However, it remains unclear whether OPE exposure is associated with increased BP in children and adolescents. Here, we investigated the associations between OPE exposure and BP levels in 6–18-year-old children and adolescents from a cross-sectional study in Liuzhou, China. OPE metabolites were determined in spot urine samples (n = 1194) collected between April and May 2018. Three measurements of systolic and diastolic BP for each participant were averaged as study outcomes. Associations of OPE exposure with age-, sex- and height-standardized BP were assessed using linear regression models. We found that each natural log unit increment of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) was associated with a 0.06 standard deviation unit (95% confidant interval (CI): 0.01, 0.11) increase in systolic BP z-score. When conducting stratified analysis based on sex, age, and BMI category, BDCIPP was shown to be positively associated with systolic/diastolic BP z-score in females, but not in males. The associations between bis(2-butoxyethyl) phosphate (BBOEP) and systolic/diastolic BP z-score were pronounced in adolescents, but not in children. Moreover, a significant positive association between 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) and diastolic BP z-score was observed in obese subjects. The present study provides the first evidence that OPE exposure was related to increased BP in children and adolescents. Given the scarcity of high-quality evidence supporting these results, the health effects of OPEs are warrant investigation in well-designed prospective studies.
Afficher plus [+] Moins [-]Spatial occurrence and composition profile of organophosphate esters (OPEs) in farmland soils from different regions of China: Implications for human exposure
2021
The environmental load of organophosphate ester (OPE) flame retardants has caused a series of problems due to their extensive use. The soil matrix, as an ultimate sink for organic pollution, plays a vital part in the fate of OPEs in the environment. In this study, the spatial occurrence, composition profile and health risk of 13 OPE species in farmland soils from four provinces of China were characterized. Excluding tris(2,3-dibromopropyl) phosphate (TDBPP) and ethylhexyl diphenyl phosphate (EHDPP), the remaining eleven OPEs had a high detection frequency (DF) ranging from 60% to 100%. The range of total OPE (ΣOPE) concentrations were 62.3–394 ng/g dry weight (dw), with a median of 228 ng/g dw. Among these OPEs, tris(2-ethylhexyl) phosphate (TEHP) with a median of 143 ng/g dw) was the predominant species, followed by tricresyl phosphate (TCP; median of 20.1 ng/g dw) and tris(2-chloroethyl) phosphate (TCEP; median of 17.9 ng/g dw). In terms of geographical distribution, significantly lower OPEs levels were found in samples from Heilongjiang (159 ± 47.0 ng/g dw) than in those of Guangxi (264 ± 66.0 ng/g dw), Henan (252 ± 74.5 ng/g dw) and Hubei (242 ± 52.8 ng/g dw) provinces. Principal component analysis and Spearman’s correlations were used to reveal potential sources of OPEs in the different provincial regions. Health risk exposure to OPEs in farmland soils was at an acceptable level (<1.20 × 10⁻⁵ for non-carcinogenic risk to children as the most sensitive age group; and <6.47 × 10⁻¹⁰ for carcinogenic risk to adults as the most sensitive age group) at the present detected concentrations. However, TCEP and TEHP, the predominant risk contributors, should be paid more attention.
Afficher plus [+] Moins [-]Organic contaminants of emerging concern in leachate of historic municipal landfills
2021
Propp, Victoria R. | De Silva, Amila O. | Spencer, Christine | Brown, Susan J. | Catingan, Sara D. | Smith, James E. | Roy, James W.
Many types of contaminants of emerging concern (CECs), including per- and poly-fluoroalkyl substances (PFAS), have been found in leachate of operating municipal landfills. However, there is only limited information on CECs presence in leachate of historic landfills (≥3 decades since closure, often lacking engineered liners or leachate collection systems) at concentrations that may pose a risk to nearby wells and surface water ecosystems. In this study, 48 samples of leachate-impacted groundwater were collected from 20 historic landfills in Ontario, Canada. The CECs measured included artificial sweeteners (ASs), PFAS, organophosphate esters (OPE), pharmaceuticals, bisphenols, sulfamic acid, perchlorate, and substituted phenols. The common presence of the AS saccharin, a known indicator of old landfill leachate, combined with mostly negligible levels of the AS acesulfame, an indicator of modern wastewater, revealed that most samples were strongly influenced by leachate and not cross-contaminated by wastewater (which can contain these same CECs). Several landfills, including ones closed in the 1960s, had total PFAS concentrations similar to those previously measured at modern landfills, with a maximum observed here of 12.7 μg/L. Notably elevated concentrations of several OPE, sulfamic acid, cotinine, and bisphenols A and S were found at many 30-60 year-old landfills. There was little indication of declining concentrations with landfill age, suggesting historic landfills can be long-term sources of CECs to groundwater and that certain CECs may be useful tracers for historic landfill leachate. These findings provide guidance on which CECs may require monitoring at historic landfill sites and wastewater treatment plants receiving their effluent.
Afficher plus [+] Moins [-]Seasonal occurrence, allocation and ecological risk of organophosphate esters in a typical urbanized semi-closed bay
2021
Wu, Tingting | Mao, Lulu | Liu, Xitao | Wang, Baodong | Lin, Chunye | Xin, Ming | He, Mengchang | Ouyang, Wei
In this study, water and sediment samples from the Jiaozhou Bay and surrounding rivers were collected to analyze the seasonal occurrence and allocation of 12 organophosphate esters (OPEs) and the associated ecological risk. The higher contamination of OPEs in the adjacent rivers indicated the impact of terrestrial input. Tris(1-chloropropan-2-yl) phosphate (TCIPP) was the predominant OPE in the four environmental sample groups investigated. The spatial distribution of OPEs in seawater varied greatly seasonally and was mainly affected by terrestrial input, with OPEs being redistributed under the influence of tidal currents. The partition coefficients (log Kₒc) of the OPEs were calculated, and their strong correlation with the log Kₒw (octanol-water) values suggested that the water-sediment allocation was significantly affected by hydrophobicity. The homologous relationships among the 7 OPEs with detection frequencies greater than 40% were identified by principal component analysis (PCA). The partial least squares regression (PLSR) model explicated that ∑OPEs cycling dynamics and principal controlling factors were dissimilar in the bay versus surrounding rivers. The risk quotient (RQ) faced by typical organisms in seawater and river water indicated that short-term OPEs exposure was safe for green algae, daphnia and fish. The organisms in rivers faced the higher ecological risk of OPEs in spring than in summer and winter. Therefore, the terrestrial transport of OPEs in spring should be controlled.
Afficher plus [+] Moins [-]Spatiotemporal distribution and mass loading of organophosphate flame retardants (OPFRs) in the Yellow River of China (Henan segment)
2021
Han, Jing | Tian, Jian | Feng, Jinglan | Guo, Wei | Dong, Shuying | Yan, Xu | Su, Xianfa | Sun, Jianhui
During three sampling periods in 2014, systematic investigations were conducted into contamination profiles of ten organophosphate flame retardants (OPFRs) in both suspended particulate phase and water phase in the Yellow River (Henan Area). This research shows that OPFRs exist at lower concentrations in the suspended phase than in the water phase. The median concentration of 10 OPFRs (∑₁₀OPFRs) in the suspended particulate phase was 62.5 ng/g (fluctuating from ND to 6.17 × 10³ ng/g, dw), while their median concentration in the water phase was 109 ng/L (fluctuating from 35.6 to 469 ng/L). Among the selected 10 OPFRs, triethylphosphate (TEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris(2-chloroethyl) phosphate (TCEP) were the predominant compounds in the water phase (occupying 91.6% of the ∑₁₀OPFRs), while TCPP, TCEP, and tri-o-tolyl phosphate (o-TCP) were the most common in the suspended particulate phase, accounting for 90.1% of the ∑₁₀OPFRs. Across the three sampling periods, there was no significant seasonable variation for OPFRs either in the water phase or in the suspended particulate phase, except for TCEP and TCPP in the water phase. Compared with research findings relating to concentrations of OPFRs around China and abroad, the OPFRs of the Yellow River (Henan Area) in the water phase were at a moderate level. Suspended particles (SS) had a very important impact on the transportation of OPFRs in the studied area, with about 83.9% of ∑₁₀OPFRs inflow attributed to SS inflow and about 81.7% of ∑₁₀OPFRs outflow attributed to SS outflow. The total annual inflow and outflow of OPFRs were 7.72 × 10⁴ kg and 6.62 × 10⁴ kg in the studied area, respectively.
Afficher plus [+] Moins [-]In vitro metabolic kinetics of cresyl diphenyl phosphate (CDP) in liver microsomes of crucian carp (Carassius carassius)
2021
Yan, Zhenfei | Feng, Chenglian | Jin, Xiaowei | Liu, Daqing | Hong, Yajun | Qiao, Yu | Bai, Yingchen | Moon, Hyo-Bang | Qadeer, Abdul | Wu, Fengchang
Cresyl diphenyl phosphate (CDP), as a kind of aryl substituted organophosphate esters (OPEs), is commonly used as emerging flame retardants and plasticizers detected in environmental media. Due to the accumulation of CDP in organisms, it is very important to discover the toxicological mechanism and metabolic process of CDP. Hence, liver microsomes of crucian carps (Carassius carassius) were prepared for in vitro metabolism kinetics assay to estimate metabolism rates of CDP. After 140 min incubation, the depletion of CDP accounted for 58.1%–77.1% (expect 0.5 and 2 μM) of the administrated concentrations. The depletion rates were best fitted to the Michaelis-Menten model (R² = 0.995), where maximum velocity (Vₘₐₓ) and Michaelis-Menten constant (Kₘ) were 12,700 ± 2120 pmol min⁻¹·mg⁻¹ protein and 1030 ± 212 μM, respectively. Moreover, the in vitro hepatic clearance (CLᵢₙₜ) of CDP was 12.3 μL min⁻¹·mg⁻¹ protein. Log Kₒw and bioconcentration factor (BCF) of aryl-OPEs were both higher than those of alkyl- and chlorinated-OPEs, indicating that CDP may easily accumulate in aquatic organisms. The results made clear that the metabolism rate of CDP was greater than those of other OPEs detected in liver microsomes in previous research. This paper was first of its kind to comprehensively investigate the in vitro metabolic kinetics of CDP in fish liver microsomes. The present study might provide useful information to understand the environmental fate and metabolic processes of these kinds of substances, and also provide a theoretical basis for the ecological risk assessment of emerging contaminants.
Afficher plus [+] Moins [-]Environmental Estrogens and Their Biological Effects through GPER Mediated Signal Pathways
2021
Qie, Yu | Qin, Weiping | Zhao, Keda | Liu, Chang | Zhao, Lixia | Guo, Liang-Hong
Many environmental chemicals have been found to exert estrogenic effects in cells and experimental animals by activating nuclear receptors such as estrogen receptors and estrogen-related receptors. These compounds include bisphenols, pesticides, polybrominated diphenyl ethers (PBDEs), organophosphate flame retardants, phthalates and metalloestrogens. G protein-coupled estrogen receptor (GPER) exists widely in numerous cells/tissues of human and other vertebrates. A number of studies have demonstrated that GPER plays a vital role in mediating the estrogenic effects of environmental pollutants. Even at very low concentrations, these chemicals may activate GPER pathways, thus affect many aspects of cellular functions including proliferation, metastasis and apoptosis, resulting in cancer progression, cardiovascular disorders, and reproductive dysfunction. This review summarized the environmental occurrence and human exposure levels of these pollutants, and integrated current experimental evidence toward revealing the underlying mechanisms of pollutant-induced cellular dysfunction via GPER. The GPER mediated rapid non-genomic actions play an important role in the process leading to the adverse effects observed in experimental animals and even in human beings.
Afficher plus [+] Moins [-]