Affiner votre recherche
Résultats 1-10 de 1,811
Copper mobilization affected by weather conditions in a stormwater detention system receiving runoff waters from vineyard soils ( Champagne, France ) Texte intégral
2009
Banas, Damien | Marin, Bernard | Skraber, S. | Chopin, E.I.B. | Zanelle, A. | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Laboratoire d'Eco-Toxicologie ; Université de Reims Champagne-Ardenne (URCA) | Department of Environment and Agro-biotechnologies (EVA) ; Centre de Recherche Public - Gabriel Lippmann (LUXEMBOURG) | Department of Chemistry, Oakland University ; Oakland University | Università degli Studi di Padova = University of Padua (Unipd)
International audience | Copper, a priority substance on the EU-Water Framework Directive list, is widely used to protect grapevines against fungus diseases. Many vineyards being located on steep slopes, large amounts of Cu could be discharged in downstream systems by runoff water. The efficiency of stormwater detention basins to retain copper in a vineyard catchment was estimated. Suspended solids, dissolved (Cudiss) and total Cu (Cutot) concentrations were monitored in runoff water, upstream, into and downstream from a detention pond. Mean Cutot concentrations in entering water was 53.6 μg/L whereas it never exceeded 2.4 μg/L in seepage. Cutot concentrations in basin water (>100 μg/L in 24% of the samples) exceeded LC50 values for several aquatic animals. Copper was principally sequestered by reduced compounds in the basin sediments (2/3 of Cutot). Metal sequestration was reversible since sediment resuspension resulted in Cu remobilization. Wind velocity controlled resuspension, explained 70% of Cudiss variability and could help predicting Cu mobilization. Copper in stormwater basin is efficiently retained but can be released during windy events or after dredging.
Afficher plus [+] Moins [-]Activation of peroxydisulfate by ball-milled α-FeOOH/biochar composite for phenol removal: Component contribution and internal mechanisms Texte intégral
2022
Zhao, Ling | Zhang, Hui | Zhao, Beibei | Lyu, Honghong
Persulfate-based advanced oxidation process is considered as a promising technology for the degradation of phenol, where efficient, cost effective, and green methods with high peroxydisulfate (PS) activation capacity is of increasing demand. In this work, an in-situ liquid phase precipitation combined with ball milling method was applied for the synthesized of α-FeOOH/biochar, as be the PS activator for phenol degradation. Results showed that the ball-milled α-FeOOH and red pine wood biochar prepared at 700 °C (BM-α-FeOOH/PBC700) exhibited the highest catalytic property with PS for phenol oxidation (a phenol removal rate of 100%), compared with the BM-α-FeOOH (16.0%) and BMPBC700 (66.3%). The presence of intermediate products such as hydroquinone and catechol, and total organic carbon (TOC) removal rate (88.9%) proved the oxidation of phenol in the BM-α-FeOOH/PBC700+PS system. The characterization results showed that the functional groups (e.g., CO, C–O, Fe–O, and Si–O), the dissolved organic matter (DOM) in biochar, the loading of Fe element, and higher degree of graphitization and defect structures, contributed to the activation of PS to form free radicals (i.e., SO₄·⁻, ·OH, ·O₂⁻, and hVB⁺) for phenol oxidation, of which, SO₄·⁻ and ·OH account for 72.1% of the phenol removal rate. The specific contribution to the PS activation for phenol oxidation by each part of the materials was calculated based on the “whole to part” experiment. The contribution of DOM, acid-soluble substance, and carbon matrix and basal part in BM-α-FeOOH/PBC700 were 6.0%, 40.9%, and 53.1%, respectively. The reusability experiments of BM-α-FeOOH/PBC700 demonstrated that the composite was relatively stable after four cycles of reuse. Among three co-existing anions (NO₃⁻, Cl⁻, and HCO₃⁻), HCO₃⁻ played the most significant inhibition effects on phenol removal through reducing the phenol removal rate from 89.6% to 77.9%. This work provides guidance for the design of high active and stable carbon materials that activate PS to remove phenol.
Afficher plus [+] Moins [-]The behavior of organic sulfur species in fuel during chemical looping gasification Texte intégral
2022
Wang, Lulu | Shen, Laihong | Long, Yuyang | Shen, Dongsheng | Jiang, Shouxi
Uncoupling chemical looping gasification (CLG), the organic sulfur evolution was simulated and explored qualitatively and quantitatively using typical sulfur compounds on TG-MS and temperature-programmed fixed bed. The HS radical in the reductive atmosphere easier converted to H₂S and COS. H₂O activated the evolution of S which was stably bonded to carbon, and H₂ generated from gasification and oxidation of reductive Fe by H₂O contributed to the release of sulfur. The proportion of H₂S released from sulfur compounds was greater than 87% in steam gasification, and more than 60% during CLG. Oxygen carriers promoted the conversion of sulfur to SO₂ in the mid-temperature region (500 °C–700 °C), and H₂S in the high temperature region (700 °C–900 °C). Sulfur species played a pivotal role in sulfur evolution at low temperature of CLG. The organic sulfur in mercaptan and benzyl were more easily converted and escaped than in thiophene and phenyl. The thermal stability of sulfur species, the presence of steam and OC affected the initial temperature and peak concentration of gas sulfur release as well as sulfur distribution. Consequently, CLG strengthened the sulfur evolution, and made it possible to targeted restructure the distribution of sulfur by regulating process parameters, or blending fuel with different sulfur species for emission reduction, and selective conversion of sulfur.
Afficher plus [+] Moins [-]Hydrogen sulfide manages hexavalent chromium toxicity in wheat and rice seedlings: The role of sulfur assimilation and ascorbate-glutathione cycle Texte intégral
2022
Singh, Sani kumar | Suhel, Mohammad | Tajammul Ḥusain, | Prasad, Sheo Mohan | Singh, Vijay Pratap
The role of hydrogen sulfide (H₂S) is well known in the regulation of abiotic stress such as toxic heavy metal. However, mechanism(s) lying behind this amelioration are still poorly known. Consequently, the present study was focused on the regulation/mitigation of hexavalent chromium (Cr(VI) toxicity by the application of H₂S in wheat and rice seedlings. Cr(VI) induced accumulation of reactive oxygen species and caused protein oxidation which negatively affect the plant growth in both the cereal crops. We noticed that Cr(VI) toxicity reduced length of wheat and rice seedlings by 21% and 19%, respectively. These reductions in length of both the cereal crops were positively related with the down-regulation in the ascorbate-glutathione cycle, and were recovered by the application NaHS (a donor of H₂S). Though exposure of Cr(VI) slightly stimulated sulfur assimilation but addition of H₂S further caused enhancement in sulfur assimilation, suggesting its role in the H₂S-mediated Cr(VI) stress tolerance in studied cereal crops. Overall, the results revealed that H₂S renders Cr(VI) stress tolerance in wheat and rice seedlings by stimulating sulfur assimilation and ascorbate-glutathione which collectively reduce protein oxidation and thus, improved growth was observed.
Afficher plus [+] Moins [-]Poly-NIPAM/Fe3O4/multiwalled carbon nanotube nanocomposites for kerosene removal from water Texte intégral
2022
Abdullah, Thamer Adnan | Juzsakova, Tatjána | Le, Phuoc-Cuong | Kułacz, Karol | Salman, Ali D. | Rasheed, Rashed T. | Mallah, Muhammad Ali | Varga, Béla | Mansoor, Hadeel | Mako, Eva | Zsirka, Balázs | Nadda, Ashok Kumar | Nguyen, X Cuong | Nguyen, D Duc
Multiwalled carbon nanotubes (MWCNTs) were oxidized using a mixture of H₂SO₄ and HNO₃, and the oxidized MWCNTS were decorated with magnetite (Fe₃O₄). Finally, poly-N-isopropyl acrylamide-co-butyl acrylate (P-NIPAM) was added to obtain P-NIPAM/Fe/MWCNT nanocomposites. The nanosorbents were characterized by various techniques, including X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and Brunauer–Emmett–Teller analysis. The P-NIPAM/Fe/MWCNT nanocomposites exhibited increased surface hydrophobicity. Owing to their higher adsorption capacity, their kerosene removal efficiency was 95%; by contrast, the as-prepared, oxidized, and magnetite-decorated MWCNTs had removal efficiencies of 45%, 55%, and 68%, respectively. The P-NIPAM/Fe/MWCNT nanocomposites exhibited a sorbent capacity of 8.1 g/g for kerosene removal from water. The highest kerosene removal efficiency from water was obtained at a process time of 45 min, sorbent dose of 0.005 g, solution temperature of 40 °C, and pH 3.5. The P-NIPAM/Fe/MWCNTs showed excellent stability after four cycles of kerosene removal from water followed by regeneration. The reason may be the increase in the positive charge of the polymer at pH 3.5 and the increased adsorption affinity of the adsorbent toward the kerosene contaminant. The pseudo second-order model was found to be the most suitable model for studying the kinetics of the adsorption reaction.
Afficher plus [+] Moins [-]The seasonal variations and potential sources of nitrous acid (HONO) in the rural North China Plain Texte intégral
2022
Song, Yifei | Zhang, Yuanyuan | Xue, Chaoyang | Liu, Pengfei | He, Xiaowei | Li, Xuran | Mu, Yujing
Nitrous acid (HONO), an essential precursor of hydroxyl radicals (OH) in the troposphere, plays an integral role in atmospheric photochemistry. However, potential HONO sources remain unclear, particularly in rural areas, where long-term (including seasonal) measurements are scarce. HONO and related parameters were measured at a rural site in the North China Plain (NCP) during the winter of 2017 and summer and autumn of 2020. The mean HONO level was higher in winter (1.79 ± 1.44 ppbv) than in summer (0.67 ± 0.50 ppbv) and autumn (0.83 ± 0.62 ppbv). Source analysis revealed that the heterogeneous conversion (including photo-enhanced conversion) of NO₂ on the ground surface dominated the daytime HONO production in the three seasons (43.1% in winter, 54.3% in summer, and 62.0% in autumn), and the homogeneous reaction of NO and OH contributed 37.8, 12.2, and 28.4% of the daytime HONO production during winter, summer, and autumn, respectively. In addition, the total contributions of other sources (direct vehicle emissions, particulate nitrate photolysis, NO₂ uptake and its photo-enhanced reaction on the aerosol surface) to daytime HONO production were less than 5% in summer and autumn and 12.0% in winter. Unlike winter and autumn, an additional HONO source was found in summer (0.45 ± 0.21 ppbv h⁻¹, 31.4% to the daytime HONO formation), which might be attributed to the HONO emission from the fertilized field. Among the primary radical sources (photolysis of HONO, O₃, and formaldehyde), HONO photolysis was dominant, with contributions of 82.6, 49.3, and 63.2% in winter, summer, and autumn, respectively. Our findings may aid in understanding HONO formation in different seasons in rural areas and may highlight the impact of HONO on atmospheric oxidation capacity.
Afficher plus [+] Moins [-]Ractopamine at legal residue dosage accelerates atherosclerosis by inducing endothelial dysfunction and promoting macrophage foam cell formation Texte intégral
2022
Chen, Chia-Hui | Guo, Bei-Chia | Hu, Po-An | Lee, Hsueh-Te | Hu, Hsuan-Yun | Hsu, Man-Chen | Chen, Wen-Hua | Lee, Tzong-Shyuan
Ractopamine, a synthetic β-adrenoreceptor agonist, is used as an animal feed additive to increase food conversion efficiency and accelerate lean mass accretion in farmed animals. The U.S. Food and Drug Administration claimed that ingesting products containing ractopamine residues at legal dosages might not cause short-term harm to human health. However, the effect of ractopamine on chronic inflammatory diseases and atherosclerosis is unclear. Therefore, we investigated the effects of ractopamine on atherosclerosis and its action mechanism in apolipoprotein E-null (apoe⁻/⁻) mice and human endothelial cells (ECs) and macrophages. Daily treatment with ractopamine for four weeks increased the body weight and the weight of brown adipose tissues and gastrocnemius muscles. However, it decreased the weight of white adipose tissues in apoe⁻/⁻ mice. Additionally, ractopamine exacerbated hyperlipidemia and systemic inflammation, deregulated aortic cholesterol metabolism and inflammation, and accelerated atherosclerosis. In ECs, ractopamine treatment induced endothelial dysfunction and increased monocyte adhesion and transmigration across ECs. In macrophages, ractopamine dysregulated cholesterol metabolism by increasing oxidized low-density lipoprotein (oxLDL) internalization and decreasing reverse cholesterol transporters, increasing oxLDL-induced lipid accumulation. Collectively, our findings revealed that ractopamine induces EC dysfunction and deregulated cholesterol metabolism of macrophages, which ultimately accelerates atherosclerosis progression.
Afficher plus [+] Moins [-]A comparative and modeled approach for three biochar materials in simultaneously preventing the migration and reducing the bioaccessibility of heavy metals in soil: Revealing immobilization mechanisms Texte intégral
2022
Wang, Gehui | T̤āriq, Muḥammad | Liang, Weiyu | Wan, Jiang | Peng, Cheng | Zhang, Wei | Cao, Xinde | Lou, Ziyang
The effectiveness and feasibility of the three biochar materials for remediation of arsenic (As) and lead (Pb) contaminated soil were explored in this study. Significant reduction of bioaccessibility and migration risks of both heavy metals have been explained mechanistically by incubation, column experiments and numerical simulation. Langmuir equation fitted As and Pb sorption isotherms better in the control and biochar (BC) amended soils, while Freundlich model was more suitable for iron modified biochar (Fe-BC) and sulfur/iron modified biochar (S/Fe-BC) amended soils, indicating that modified biochar promoted chemical adsorption process for As and Pb. For the three biochar materials, S/Fe-BC showed the best effects on reducing the bioavailability of As and Pb, with a decrease of 40.42%–64.21%. The reduction in bioaccessibility by metal portioning into available and non-available fractions was better for illustrating the mechanisms including adsorption, precipitation/coprecipitation and As(III) oxidation behind S/Fe-BC efficacy. Moreover, S/Fe-BC can effectively inhibit the leaching behavior of As and Pb under acid rain, which increased by 99.89% and 90.18%, respectively, compared with the control. The HYDRUS-1D modeling indicated that S/Fe-BC could continuously treat As (100 mg/L) and Pb (1000 mg/L) contaminated water for 16.22 years and 40.86 years, respectively, and ensure the groundwater quality criteria being met. Based on these insights, we believe that our study will provide meaningful information about the potentials of biochar derived materials for soil heavy metals’ remediation.
Afficher plus [+] Moins [-]Phase transformation-driven persulfate activation by coupled Fe/N–biochar for bisphenol a degradation: Pyrolysis temperature-dependent catalytic mechanisms and effect of water matrix components Texte intégral
2022
Wang, Yujiao | Wang, Li | Cao, Yuqing | Bai, Shanshan | Ma, Fang
Fe–N co-doped biochar is recently an emerging carbocatalyst for persulfate activation in situ chemical oxidation (ISCO). However, the involved catalytic mechanisms remain controversial and distinct effects of coexisting water components are still not very clear. Herein, we reported a novel N-doped biochar-coupled crystallized Fe phases composite (Fe@N-BC₈₀₀) as efficient and low-cost peroxydisulfate (PDS) activators to degrade bisphenol A (BPA), and the underlying influencing mechanism of coexisting inorganic anions (IA) and humic constituent. Due to the formation of graphitized nanosheets with high defects (AI index>0.5, ID/IG = 1.02), Fe@N-BC₈₀₀ exhibited 2.039, 5.536, 8.646, and 23.154-fold higher PDS catalytic activity than that of Fe@N-BC₆₀₀, Fe@N-BC₄₀₀, N-BC, BC. Unlike radical pathway driven by carbonyl group and pyrrolic N of low/mid-temperature Fe@N–BCs. The defective graphitized nanosheets and Fe-Nx acted separately as electron transfer and radical pathway active sites of Fe@N-BC₈₀₀, where π-π sorption assisted with pyrrolic N and pore-filling facilitated BPA degradation. The strong inhibitory effects of PO₄³⁻ and NO₂⁻ were ascribed to competitive adsorption of phosphate (61.11 mg g⁻¹) and nitrate (23.99 mg g⁻¹) on Fe@N-BC₈₀₀ via electrostatic attraction and hydrogen bonding. In contrast, HA competed for the pyrrolic-N site and hindered electron delivery. Moreover, BPA oxidation pathways initiated by secondary free radicals were proposed. The study facilitates a thorough understanding of the intrinsic properties of designed biochar and contributes new insights into the fate of degradation byproducts formed from ISCO treatment of micropollutants.
Afficher plus [+] Moins [-]Microbial mediated arsenate reducing behavior in landfill leachate-saturated zone Texte intégral
2022
Liu, Jinbao | Zhang, Dongchen | Luo, Yongjun | Ding, Tao | Hu, Lifang
As(V) reduction mediated by microorganisms might be an essential process in resisting As toxicity since As(V) is the major species in the landfill. LSZ has been considered as a trigger of all types of microbial activity inside a landfill site. This research investigated the microbial As(V)-reducing behavior in LSZ. The results revealed that higher As(V)-reduction efficiency in higher As(V) content-stress LSZ scenario. The corresponding microbial diversity also varied with the As(V) content. The microbial community structure was related to arrA and arsC distribution, which encode respiratory As(V) reductase and cytoplasmic As(V) reductase, respectively. The landfill As bio-reduction pathways were modeled, as well as the As functional gene distribution among different As(V) contents at different landfill stages. The C, N, and S metabolic processes generally affected the As(V)-resistance genes distribution. Thiosulfate oxidation, denitrification, and dissimilatory nitrate reduction positively affected arsC, while dissimilatory sulfate reduction and methanogenesis trended to play a negative role. This research provides new insight into As(V) bio-reduction inside a landfill site in terms of functional genes distribution and correlation with nutrient elements metabolic processes.
Afficher plus [+] Moins [-]