Affiner votre recherche
Résultats 1-2 de 2
Intrauterine antibiotic exposure affected neonatal gut bacteria and infant growth speed
2021
Zhou, Yuhan | Ma, Wenjuan | Zeng, Yu | Yan, Chonghuai | Zhao, Yingya | Wang, Pengpeng | Shi, Huijing | Lu, Wenwei | Zhang, Yunhui
Although abundant evidence has suggested that early-life antibiotic exposure was associated with adipogenesis later in life, limited data were available on the effect of intrauterine antibiotic exposure on infant growth and growth speed. Additionally, few studies have investigated the role of the neonatal gut microbiota in the above association. In this study, we examined the association between intrauterine cumulative antibiotic exposure and infant growth and explored the potential role of the neonatal gut microbiota in the association. 295 mother-child pairs from the Shanghai Maternal-Child Pairs Cohort (MCPC) study were included, and meconium samples and infant growth measurements were assessed. Z-scores of length-for-age, weight-for-age (weight-for-age), and body mass index (BMI)-for-age (BMI-for-age) were calculated. Eighteen common antibiotics were measured in meconium. Multivariable linear regression models were applied to test the interrelationships between antibiotic exposure, diversity indicators, and the relative abundance of selected bacterial taxa from phylum to genus levels from least absolute shrinkage and selection operator (LASSO) and infant growth indicators. The detection rates of the 18 antibiotics, except for chlortetracycline, penicillin, and chloramphenicol, were below 10 %. Penicillin was found to be positively associated with infant growth at birth and with growth speed from 2 to 6 months. The Pielou and Simpson indexes were negatively associated with meconium penicillin. Nominally significant associations between penicillin and the relative abundances of several bacterial taxa from the phyla Proteobacteria, Bacteroidetes, and Firmicutes were found. The Pielou and Simpson indexes were also found to be negatively associated with infant growth. Among taxa selected from LASSO regression, the relative abundances of the phyla Actinobacteria and Firmicutes and order Bifidobacteriales were found to be significantly associated with weight and BMI growth speeds from 2 to 6 months. In conclusion, intrauterine antibiotic exposure can affect infant growth. The neonatal gut microbiota might play a role in the abovementioned association.
Afficher plus [+] Moins [-]Negative bottom-up effects of sulfadiazine, but not penicillin and tetracycline, in soil substitute on plants and higher trophic levels
2019
Pufal, Gesine | Memmert, Jörg | Leonhardt, Sara Diana | Minden, Vanessa
Veterinary antibiotics are widely used in livestock production and can be released to the environment via manure, affecting non-target organisms. Recent studies provide evidence that antibiotics can adversely affect both plants and insects but whether antibiotics in soil also affect trophic interactions is unknown.We tested whether antibiotics grown in sand as soil substitute with environmentally relevant concentrations of penicillin, sulfadiazine and tetracycline affect the survival of aphids feeding on plants (two crop and one non-crop plant species). Apera spica-venti, Brassica napus, and Triticum aestivum individuals were infested with aphids that were monitored over four weeks. We did not observe effects of penicillin or tetracycline on plants or aphids. However, sulfadiazine treatments reduced plant growth and increased mortality in the two tested grass species, but not in B. napus. Sulfadiazine subsequently decreased aphid density indirectly through reduced host plant biomass. We thus show that an antibiotic at realistic concentrations in a soil substitute can affect several trophic levels, i.e. plants and herbivores. This study contributes to the environmental risk assessment of veterinary antibiotics as it implies that their use potentially affects plant-insect interactions at environmentally relevant concentrations.
Afficher plus [+] Moins [-]