Affiner votre recherche
Résultats 1-10 de 383
Ethylene positively regulates Cd tolerance via reactive oxygen species scavenging and apoplastic transport barrier formation in rice
2022
Chen, Haifei | Zhang, Quan | Lv, Wei | Yu, Xiaoyi | Zhang, Zhenhua
Ethylene regulates plant root growth and resistance to environment stress. However, the role and mechanism of ethylene signaling in response to Cd stress in rice remains unclear. Here, we revealed that ethylene signaling plays a positive role in the resistance of rice to Cd toxicity. Blocking the ethylene signal facilitated root elongation under normal conditions, but resulted in severe oxidative damage and inhibition of root growth under Cd stress. Conversely, ethylene signal enhancement by EIN2 overexpression caused root bending, similar to the response of roots to Cd stress, and displayed higher Cd tolerance than the wildtype (WT) plants. Comparative transcriptome analysis indicated EIN2-mediated upregulation of genes involved in flavonoid biosynthesis and peroxidase activity under Cd stress. The synthesis of phenolic acids and flavonoids were positively regulated by ethylene. Thus, the ein2 (ethylene insensitive 2) mutants displayed lower ROS scavenging capacity than the WT. Moreover, a significant increase in Cd accumulation and relatively increased apoplastic flow were observed in the root apex of the ein2 mutant compared with the WT plants. Overall, EIN2-mediated Cd resistance in rice is mediated by the upregulation of flavonoid biosynthesis and peroxidase activity to induce ROS scavenging, and apoplastic transport barrier formation reduces Cd uptake.
Afficher plus [+] Moins [-]Physiochemical responses of earthworms (Eisenia fetida) under exposure to lanthanum and cerium alone or in combination in artificial and contaminated soils
2022
Tang, Wantong | Wang, Guiyin | Zhang, Shirong | Li, Ting | Xu, Xiaoxun | Deng, Ouping | Luo, Ling | He, Yan | Zhou, Wei
Rare earth elements inevitably release into the soil due to their widespread application. However, it is unclear how they affect the soil animals. The study surveyed the growth and physiological responses of earthworm (Eisenia fetida) exposed into artificial soils spiked with La, Ce, and their mixture, and actual mine soil collected from an abandoned La–Ce mining area (Mianning, Sichuan). The results showed that the 1000–1200 mg/kg combined exposure in two soils induced significant histopathological and phenotypic changes of earthworms. Concentration significantly affected the superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and protein of E. fetida and the effects differentiated with the prolonging duration. These indicators were negatively affected under the La stress ≥800 mg/kg (SOD, POD, and protein), the 1200 mg/kg (SOD), Ce stress ≥1000 mg/kg (protein), and the combination ≥800 mg/kg (SOD, POD) and ≥1000 mg/kg (protein). Artificial combination had −15.04% (SOD), 8.87% (POD), 5.64% (MDA), and −8.34% (protein) difference compared with the contamination soil, respectively. Overall, E. fetida respond sensitively under the La and Ce stress, the antioxidant defense system and the lipid peroxidation were stimulated, and the artificial soil might overestimate eco-toxicological effect.
Afficher plus [+] Moins [-]Copper stress in grapevine: Consequences, responses, and a novel mitigation strategy using 5-aminolevulinic acid
2022
Yang, Yuxian | Fang, Xiang | Chen, Mengxia | Wang, Lingyu | Xia, Jiaxin | Wang, Zicheng | Fang, Jinggui | Tran, Lam-son Phan | Shangguan, Lingfei
Improper application of copper-based fungicides has made copper stress critical in viticulture, necessitating the need to identify substances that can mitigate it. In this study, leaves of ‘Shine Muscat’ (‘SM’) grapevine seedlings were treated with CuSO₄ solution (10 mM/L), CuSO₄ + 5-aminolevulinic acid (ALA) (50 mg/L), and distilled water to explore the mitigation effect of ALA. Physiological assays demonstrated that ALA effectively reduced malondialdehyde accumulation and increased peroxidase and superoxide dismutase activities in grapevine leaves under copper stress. Copper ion absorption, transport pathways, chlorophyll metabolism pathways, photosynthetic system, and antioxidant pathways play key roles in ALA alleviated-copper stress. Moreover, expression changes in genes, such as CHLH, ALAD, RCA, and DHAR, play vital roles in these processes. Furthermore, abscisic acid reduction caused by NCED down-regulation and decreased naringenin, leucopelargonidin, and betaine contents confirmed the alleviating effect of ALA. Taken together, these results reveal how grapevine responds to copper stress and the alleviating effects of ALA, thus providing a novel means of alleviating copper stress in viticulture.
Afficher plus [+] Moins [-]Exogenous 24-Epibrassinolide stimulates root protection, and leaf antioxidant enzymes in lead stressed rice plants: Central roles to minimize Pb content and oxidative stress
2021
Guedes, Flávia Raphaela Carvalho Miranda | Maia, Camille Ferreira | Silva, Breno Ricardo Serrão da | Batista, Bruno Lemos | Alyemeni, Mohammed Nasser | Ahmad, Parvaiz | Lobato, Allan Klynger da Silva
Lead (Pb) is an environmental pollutant that negatively affects rice plants, causing damage to the root system and chloroplast structures, as well as reducing growth. 24-Epibrasnolide (EBR) is a plant growth regulator with a high capacity to modulate antioxidant metabolism. The objective of this research was to investigate whether exogenous EBR application can mitigate oxidative damage in Pb-stressed rice plants, measure anatomical structures and evaluate physiological and biochemical responses connected with redox metabolism. The experiment was randomized with four treatments, including two lead treatments (0 and 200 μM PbCl₂, described as - Pb and + Pb, respectively) and two treatments with brassinosteroid (0 and 100 nM EBR, described as - EBR and + EBR, respectively). The results revealed that plants exposed to Pb suffered significant disturbances, but the EBR alleviated the negative interferences, as confirmed by the improvements in the root structures and antioxidant system. This steroid stimulated the root structures, increasing the epidermis thickness (26%) and aerenchyma area (50%), resulting in higher protection of this tissue against Pb²⁺ ions. Additionally, EBR promoted significant increases in superoxide dismutase (26%), catalase (24%), ascorbate peroxidase (54%) and peroxidase (63%) enzymes, reducing oxidative stress on the photosynthetic machinery in Pb-stressed plants. This research proved that EBR mitigates the toxic effects generated by Pb in rice plants.
Afficher plus [+] Moins [-]Physiological, ultrastructural, biochemical, and molecular responses of glandless cotton to hexavalent chromium (Cr6+) exposure
2020
Samrana, Samrana | ʻAlī, ʻĀbid | Muhammad, Uzair | Azizullah, Azizullah | Ali, Hamid | Khan, Mumtaz | Naz, Shama | Khan, Muhammad Daud | Zhu, Shuijin | Chen, Jinhong
Glandless cotton can be grown to obtain cotton seeds free of toxic gossypol for use as both food and feed. However, they are not grown normally due to their lesser productivity and higher susceptibility to biotic stress. Great attention has been paid to biotic stresses rather than abiotic stresses on glandless cotton. Chromium (Cr) is a common pollutant of soil and considered a serious threat to plants due to its adverse effects on different functions. Although numerous studies are available on the toxicity of Cr⁶⁺ in various plants. However, its adverse effects and mechanism of toxicity in glandless cotton can seldom be found in the literature. This study examined the Cr⁶⁺ effect on glandless cotton in comparison to glanded cotton. Four pairs of glanded and glandless cotton near-isogenic lines (NILs) were exposed to different doses (0, 10, 50, and 100 μM/L) of Cr⁶⁺ for seven days, and biochemical, physiological, molecular, and ultrastructure changes were observed, which were significantly affected by Cr⁶⁺ at high concentrations in all NILs. The effect of Cr⁶⁺ on ionic contents shows the same trend in glanded and glandless NILs except for manganese (Mn²⁺) that show inhibition in glandless (ZMS-12w and Coker-312w) and enhance in the glanded NIL (ZMS-17). The gene expression of superoxide dismutase (SOD) and peroxidase (POD) revealed similar trends as enzyme activities in glandless NILs. The principal component analysis (PCA) and Agglomerative hierarchical clustering (AHC) results of all NILs from morpho-physiological traits, cluster ZMS-16, and ZMS-17 into Cr⁶⁺ sensitive group. While the glandless NILs have the potential to cope with the Cr toxicity by increasing the antioxidant enzyme activity and their gene expression. This study also revealed that Cr⁶⁺ tolerance in cotton is genotypic and has an independent mechanism in the root that not related to low gossypol.
Afficher plus [+] Moins [-]Accumulation characteristics and biological response of ginger to sulfamethoxazole and ofloxacin
2020
Lv, Yao | Xu, Jiamin | Xu, Kun | Liu, Xiaohui | Guo, Xiaochun | Lu, Shaoyong | Xi, Beidou
The potential risk to human health of antibiotics that pass through the food chain has become an important global issue, but there are few reports on the response of ginger (Zingiber officinale) to antibiotic pollution. In this study, we investigated the enrichment characteristics and biological response of ginger to sulfamethoxazole (SMZ) and ofloxacin (OFL) residues, which are common in the environment. Lower levels of SMZ, OFL and their combined duplex treatment (SMZ+OFL) promoted the growth of ginger, but the critical doses necessary to stimulate growth differed among treatments: 10 mg L⁻¹ SMZ, 1 mg L⁻¹ OFL and 1 mg L⁻¹ (SMZ+OFL) had the strongest stimulating effects. At higher dosages, the root growth and light energy utilization efficiency of ginger were impaired, and (SMZ+OFL) had the strongest inhibitory effect. Treatments with lower levels of antibiotics had no significant effect on reactive oxygen species and antioxidant enzyme activities. However, when SMZ, OFL and SMZ+OFL concentrations exceeded 10 mg L⁻¹, the contents of H₂O₂, O₂⁻ and MDA continued to increase, while the activities of SOD, POD, CAT first increased and then decreased, especially in SMZ+OFL. Ginger accumulated more SMZ and OFL in rhizomes and less in leaves, and accumulation increased significantly as antibiotic concentration increased. When SMZ concentration was 1 mg L⁻¹, the SMZ concentrations in rhizomes, roots, and leaves were 0.23, 0.15, and 0.05 mg kg⁻¹, respectively, and the residual SMZ in the rhizome was 2.3 times higher than the maximum residue limit. The abundance of the resistance genes sul1, sul2, qnrS, and intI1 increased with increasing antibiotic concentrations, and intI1 abundance was the highest. OFL induced higher levels of intI1 expression than did SMZ.
Afficher plus [+] Moins [-]Reduced phytotoxicity of nonylphenol on tomato (Solanum lycopersicum L.) plants by earthworm casts
2020
Jiang, Lei | Wang, Bingjie | Liang, Jingqi | Pan, Bo | Yang, Yi | Lin, Yong
Concentrations as high as thousands of milligrams per kilogram (dry weight) of nonylphenol (NP), an endocrine-disrupting chemical of great concern, have been reported in soil. Soil is considered one of the primary pathways for exposure of crop plants to NP. However, there have been few studies on the toxicity of soil NP to crop plants, especially with comprehensive consideration of the application of organic fertiliser which is a common agricultural practice. In this study, tomato plants were grown in soils treated with NP in the presence and/or absence of earthworm casts (EWCs). After four weeks, we tested the physiological and biochemical responses (accumulative levels of hydrogen peroxide (H₂O₂) and superoxide anion radicals (O₂-·), total chlorophyll content, degree of membrane lipid peroxidation, activities of defence-related enzymes, and level of DNA damage) and the changes in plant growth (elongation and biomass). The growth inhibition, reactive oxygen species (H₂O₂ and O₂-·) accumulation, decrease in chlorophyll content, increase in activity of defence-related enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione S-transferase and glutathione reductase), enhancement of membrane lipid peroxidation, and DNA damage in NP-treated seedlings were clearly reversed by the intervention of EWCs. In particular, the suppressed elongation, biomass, and chlorophyll content in tomato plants exposed to NP alone were significantly restored by EWCs to even greater levels than those of the undisturbed control. In other words, EWCs could efficiently invigorate the photosynthesis of crops via up-regulating the chlorophyll content, thereby overwhelming the NP stress on plant growth. Accordingly, except for reducing the bioavailability of soil NP as reported in our previous study, EWCs could also help crop plants to cope with NP stress by strengthening their stress resistance ability. Our findings are of practical significance for the formulation of strategies to relieve the negative effects of soil NP on crop growth.
Afficher plus [+] Moins [-]Acute effects of PAH contamination on microbial community of different forest soils
2020
Picariello, Enrica | Baldantoni, Daniela | De Nicola, Flavia
Polycyclic aromatic hydrocarbons (PAHs) are hazardous organic compounds with mutagenic, genotoxic and carcinogenic properties. Although PAHs in soil can cause toxicity to microorganisms, the microbial community is able to degrade these compounds. For this reason, it is important to study acute and short-term effects of PAH contamination on soil microbial community, also to shed light on its possible exploitation in soil restoration.The effects of acute PAH contamination on the structure and metabolic activity of microbial communities in three forest (beech, holm oak, black pine) soils were studied. The soils were spiked with phenanthrene, pyrene or benzo[a]pyrene and incubated in experimental mesocosms, under controlled conditions. Enzymatic activities (laccase, total peroxidase and hydrolase), as well as microbial biomass and community structure (through phospholipid fatty acid and ergosterol analyses), were evaluated in the three soil systems 4 days after contamination and compared to no-spiked soils. In soil under holm oak, there was a stimulation of Gram+ bacteria after contamination with all the 3 PAHs, whereas in soil under pine, pyrene and phenanthrene additions mainly stimulated fungi and actinomycetes.
Afficher plus [+] Moins [-]The effect of environmentally relevant emerging per- and polyfluoroalkyl substances on the growth and antioxidant response in marine Chlorella sp
2019
Niu, Zhiguang | Na, Jing | Xu, Wei'an | Wu, Nan | Zhang, Ying
The 6:2 chlorinated polyfluoroalkyl ether sulfonic acids (6:2 Cl-PFAES), 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-propanoic acid (HFPO-DA) and perfluoroethylcyclohexane sulfonate (PFECHS) are emerging per- and polyfluoroalkyl substances (PFASs) that are being applied to replace phased-out PFASs, which have high persistency, high bioaccumulation potential and high toxicity. Recently, these emerging PFASs were observed in estuary and marine areas with a pollution level of ng/L. In this study, three levels (10 ng L⁻¹, 100 ng L⁻¹ and 1000 ng L⁻¹) for these PFASs were selected to investigate the response of marine Chlorella sp. to 14 days of exposure. The growth of Chlorella sp. was significantly inhibited by each PFAS over time. Treatments with 1000 ng/L exposure caused the most severe reduction in growth for each PFAS treatment. For the first half of the experimental period (from Day 0 to Day 6), the influence of each PFAS was not significant (p > 0.05). However, treatments with all concentrations of 6:2 Cl-PFAES, HFPO-DA and 1000 ng L⁻¹ PFECHS significantly reduced the growth of Chlorella sp. from Day 8. The superoxide dismutase (SOD) activities in Chlorella sp. were significantly increased (p < 0.05) when exposed to 6:2 Cl-PFAES, HFPO-DA and PFECHS. The catalase (CAT) and peroxidase (POD) activities in Chlorella sp. were significantly inhibited (p < 0.05) by each PFAS. The glutathione (GSH) contents in Chlorella sp. were significantly increased by each PFAS. However, the increases in GSH concentration in Chlorella sp. were low. The inhibition of algal growth was primarily due to the reduction of the activities of CAT and POD. PFECHS had the lowest toxicity among the three PFASs, and it induced less oxidized damage to Chlorella sp. In conclusion, as alternatives to phased-out PFASs, the emerging PFASs are not safe in aquatic environment, and attention should be paid to the management and restriction of these emerging PFASs.
Afficher plus [+] Moins [-]Responses of leaf-associated biofilms on the submerged macrophyte Vallisneria natans during harmful algal blooms
2019
Jiang, Mengqi | Zhou, Yanping | Ji, Xiyan | Li, Huimin | Zheng, Zheng | Zhang, Jibiao
The present study investigated the physiological responses, photosynthetic activity, and microbial community structure of leaf-associated biofilms on the microphyte Vallisneria natans during a harmful algal bloom. Results of the physiological and photosynthetic indices (Fᵥ/Fₘ ratios [maximum quantum yield of photosystem II (PSII)]; malondialdehyde content; total chlorophyll; and activities of superoxide dismutase, catalase and peroxidase) indicated that algal blooms could cause inhibition of photosynthesis, oxidative stress and an antioxidant system stress response in Vallisneria natans leaf-associated biofilms. Multifractal analysis suggested that allelochemicals or algal organic matter released by cyanobacteria could reduce the surface roughness of the leaf. Microbial diversity analysis of the biofilms showed that algal blooms slightly altered the microbial community structure while the richness and evenness of the microbial composition remained stable. This study provided useful information to better understand the adverse effects of algal blooms on submerged macrophytes.
Afficher plus [+] Moins [-]