Affiner votre recherche
Résultats 1-10 de 49
Pubertal Bisphenol A exposure increases adult rat serum testosterone by resetting pituitary homeostasis Texte intégral
2022
Chen, Dan | Zhao, Xingyi | Huang, Fu | Guan, Xiaoju | Tian, Jing | Ji, Minpeng | Wen, Xin | Shao, Jingjing | Xie, Jiajia | Wang, Jiexia | Chen, Haolin
Bisphenol A (BPA) is widely used by manufacturers and in consumer products. Its release in the environment may affect male reproductive function. In this study, we examined the effect of low dose (0.1 mg/kg BW), short term exposure during puberty (PD21-35) on adult rat male reproduction. The results indicated that such exposure reset growth hormone (GH) and follicular stimulating hormone (FSH) homeostasis and resulted in a significantly higher level of serum testosterone without affecting serum luteinizing hormone level. QPCR and Western blot results showed that BPA significantly up-regulated selective genes/proteins in the Leydig cell steroidogenic pathway, including steroidogenic acute regulatory protein, cytochrome P450 11A1, cytochrome P450 17A, and low-density lipoprotein receptor. RNA-Seq analysis of testicular RNAs showed that BPA significantly affected the gene profiles of multiple testicular interstitial populations without affecting germ cells. Also, GO- and KEGG-analysis suggested that IGF1-related PI3K/AKT signaling was activated, which was confirmed by the increased phosphorylation of IRS1, AKT1 and CREB. The results indicated that a low-dose, short-term BPA exposure during puberty affected the adult male rat pituitary (GH and FSH) and testis (testosterone) homeostasis.
Afficher plus [+] Moins [-]The role of NLRP3 in lead-induced neuroinflammation and possible underlying mechanism Texte intégral
2021
Su, Peng | Wang, Diya | Cao, Zipeng | Chen, Jingyuan | Zhang, Jianbin
Neuroinflammation induced by lead exposure (Pb) is a major cause of neurotoxicity of Pb in the central nervous system (CNS). The NLR family, domain of pyrin containing 3 (NLRP3) involves in various neurological diseases, while the question of whether NLRP3 plays a role in lead-induced neuroinflammation has not yet been reported.Developmental and knockout (KO) NLRP3 mice were used to establish two in vivo models, and BV2 cells were used to establish an in vitro model. Behavioral and electrophysiologic tests were used to assess the neurotoxicity of Pb, and immunofluorescence staining was used to assess neuroinflammation. Real-time PCR and western blot were performed to examine the mRNA and protein levels of inflammatory cytokines and NLRP3 inflammasomes. siRNA technology was used to block NLRP3 expression.Pb exposure led to neural injure and microglial activation in the hippocampus region, while minocycline intervention attenuated Pb-induced neurotoxicity by inhibiting neuroinflammation. Pb increased the expression of NLRP3 and promoted cleavage of caspase-1 in mRNA and protein levels, and minocycline partially reversed the effects of Pb on NLRP3 inflammasomes. Blocking of NLRP3 by KO mice or siRNA attenuated neural alterations induced by Pb, weakened microglial activation in vivo and in vitro as well, without affecting the accumulation of Pb. Pb increased autophagic protein levels and phosphorylation of NF-κB, while suppressing autophagy or NF-κB inhibited Pb's effects on NLRP3.NLRP3 is involved in the regulation of Pb-induced neurotoxicity. These findings expand mechanism research of Pb neurotoxicity and may help establish new prevention strategies for Pb neurotoxicity.
Afficher plus [+] Moins [-]Polychlorinated biphenyl quinone regulates MLKL phosphorylation that stimulates exosome biogenesis and secretion via a short negative feedback loop Texte intégral
2021
Peng, Lu | Wang, Yawen | Yang, Bingwei | Qin, Qi | Song, Erqun | Song, Yang
Polychlorinated biphenyls (PCBs) are one of the most refractory organic environmental pollutants that ubiquitous existence in nature. Due to the polymorphism of their metabolic pathway and corresponding downstream metabolites, PCBs’ toxicities are complicated and need extended investigation. In the present study, we discovered a novel regulatory mechanism of PCB quinone metabolite-driven programmed cell death (PCD), namely, necroptosis. We first confirmed that PCB quinone induces cancerous HeLa and MDA-MB-231 cells necroptosis via the phosphorylation of mixed lineage kinase domain-like MLKL (p-MLKL). Then, we found that PCB quinone-stimulated p-MLKL enhances exosome biogenesis and secretion. Exosome interacts with p-MLKL and releases p-MLKL to the outside of the cell, and ultimately alleviating PCB quinone-induced necroptosis. The inhibition of exosome secretion by GW4869 significantly elevated necroptotic level, indicating the establishment of a short negative feedback loop of MLKL-exosome secretion upon PCB quinone challenge. Since exosome-mediated signaling showed great implications in various human diseases, this work may provide a new mechanism for PCBs-associated toxicity.
Afficher plus [+] Moins [-]Effects of gestational Perfluorooctane Sulfonate exposure on the developments of fetal and adult Leydig cells in F1 males Texte intégral
2020
Studies have showed that some of the most common male reproductive disorders present in adult life might have a fetal origin. Perfluorooctane sulfonic (PFOS) is one of the major environmental pollutants that may affect the development of male reproductive system if exposed during fetal or pubertal periods. However, whether PFOS exposure during fetal period affects testicular functions in the adult is still unclear. Herein, we investigated the effects of a brief gestational exposure to PFOS on the development of adult Leydig- and Sertoli-cells in the male offspring. Eighteen pregnant Sprague-Dawley rats were randomly divided into three groups and each received 0, 1 or 5 mg/kg/day PFOS from gestational day 5–20. The testicular functions of F1 males were evaluated on day 1, 35 and 90 after birth. PFOS treatment significantly decreased serum testosterone levels of animals by all three ages examined. The expression level of multiple mRNAs and proteins of Leydig (Scarb1, Cyp11a1, Cyp17a1 and Hsd17b3) and Sertoli (Dhh and Sox9) cells were also down-regulated by day 1 and 90. PFOS exposure might also inhibit Leydig cell proliferation since the number of PCNA-positive Leydig cells were significantly reduced by postnatal day 35. Accompanied by changes in Leydig cell proliferation and differentiation, PFOS also significantly reduced phosphorylation of glycogen synthase kinase-3β while increased phosphorylation of β-catenin. In conclusion, gestational PFOS exposure may have significant long-term effects on adult testicular functions of the F1 offspring. Changes in Wnt signaling may play a role in the process.
Afficher plus [+] Moins [-]Chronic exposure to environmentally relevant concentrations of bisphenol S differentially affects cognitive behaviors in adult female zebrafish Texte intégral
2020
Naderi, Mohammad | Salahinejad, Arash | Attaran, Anoosha | Chivers, Douglas P. | Niyogi, Som
Evidence is emerging that environmental exposure to bisphenol S (BPS), a substitute for bisphenol A (BPA), to humans and wildlife is on the rise. However, research on the neurobehavioral effects of this endocrine disruptive chemical is still in its infancy. In this study, we aimed to investigate the effects of long-term exposure to environmentally relevant concentrations of BPS on recognition memory and its mechanism(s) of action, especially focusing on the glutamatergic/ERK/CREB pathway in the brain. Adult female zebrafish were exposed to the vehicle, 17β-estradiol (E2, 1 μg/L), or BPS (1, 10 and 30 μg/L) for 120 days. Fish were then tested in the object recognition (OR), object placement (OP), and social recognition tasks (SR). Chronic exposure to E2 and 1 μg/L of BPS improved fish performance in OP task. This was associated with an up-regulation in the mRNA expression of several subtypes of metabotropic and ionotropic glutamate receptors, an increase in the phosphorylation levels of ERK1/2 and CREB, and an elevated transcript abundance of several immediate early genes involved in synaptic plasticity and memory formation. In contrast, the exposure to 10 and 30 μg/L of BPS attenuated fish performance in all recognition memory tasks. The impairment of these memory functions was associated with a marked down-regulation in the expression and activity of genes and proteins involved in glutamatergic/ERK/CREB signaling cascade. Collectively, our study demonstrated that the long-term exposure to BPS elicits hermetic effects on the recognition memory in zebrafish. Furthermore, the effect of BPS on the recognition memory seems to be mediated by the glutamatergic/ERK/CREB signaling pathway.
Afficher plus [+] Moins [-]Genotoxicity and DNA damage signaling in response to complex mixtures of PAHs in biomass burning particulate matter from cashew nut roasting Texte intégral
2020
Approximately 3 billion people world-wide are exposed to air pollution from biomass burning. Herein, particulate matter (PM) emitted from artisanal cashew nut roasting, an important economic activity worldwide, was investigated. This study focused on: i) chemical characterization of polycyclic aromatic hydrocarbons (PAHs) and oxygenated (oxy-) PAHs; ii) intracellular levels of reactive oxygen species (ROS); iii) genotoxic effects and time- and dose-dependent activation of DNA damage signaling, and iv) differential expression of genes involved in xenobiotic metabolism, inflammation, cell cycle arrest and DNA repair, using A549 lung cells. Among the PAHs, chrysene, benzo[a]pyrene (B[a]P), benzo[b]fluoranthene, and benz[a]anthracene showed the highest concentrations (7.8–10 ng/m³), while benzanthrone and 9,10-anthraquinone were the most abundant oxy-PAHs. Testing of PM extracts was based on B[a]P equivalent doses (B[a]Pₑq). IC₅₀ values for viability were 5.7 and 3.0 nM B[a]Pₑq at 24 h and 48 h, respectively. At these low doses, we observed a time- and dose-dependent increase in intracellular levels of ROS, genotoxicity (DNA strand breaks) and DNA damage signaling (phosphorylation of the protein checkpoint kinase 1 – Chk1). In comparison, effects of B[a]P alone was observed at micromolar range. To our knowledge, no previous study has demonstrated an activation of pChk1, a biomarker used to estimate the carcinogenic potency of PAHs in vitro, in lung cells exposed to cashew nut roasting extracts. Sustained induction of expression of several important stress response mediators of xenobiotic metabolism (CYP1A1, CYP1B1), ROS and pro-inflammatory response (IL-8, TNF-α, IL-2, COX2), and DNA damage response (CDKN1A and DDB2) was also identified. In conclusion, our data show high potency of cashew nut roasting PM to induce cellular stress including genotoxicity, and more potently when compared to B[a]P alone. Our study provides new data that will help elucidate the toxic effects of low-levels of PAH mixtures from air PM generated by cashew nut roasting.
Afficher plus [+] Moins [-]Sodium fluoride exposure triggered the formation of neutrophil extracellular traps Texte intégral
2020
Wang, Jing-Jing | Wei, Zheng-Kai | Han, Zhen | Liu, Zi-Yi | Zhang, Yong | Zhu, Xing-Yi | Li, Xiao-Wen | Wang, Kai | Yang, Zheng-Tao
In recent years, numerous studies paid more attention to the molecular mechanisms associated with fluoride toxicity. However, the detailed mechanisms of fluoride immunotoxicity in bovine neutrophils remain unclear. Neutrophil extracellular traps (NETs) is a novel immune mechanism of neutrophils. We hypothesized that sodium fluoride (NaF) can trigger NETs activation and release, and investigate the related molecular mechanisms during the process. We exposed peripheral blood neutrophils to 1 mM NaF for 120 min in bovine neutrophils. The results showed that NaF exposure triggered NET-like structures decorated with histones and granule proteins. Quantitative measurement of NETs content correlated positively with the concentration of NaF. Mechanistically, NaF exposure increased reactive oxygen species (ROS) levels and phosphorylation levels of ERK, p38, whereas inhibiting the activities of superoxide dismutase (SOD) and catalase (CAT) compared with control neutrophils. NETs formation is induced by NaF and this effect was inhibited by the inhibitors diphenyleneiodonium chloride (DPI), U0126 and SB202190. Our findings described the potential importance of NaF-triggered NETs related molecules, which might help to extend the current understanding of NaF immunotoxicity.
Afficher plus [+] Moins [-]In ovo very early-in-life exposure to diesel exhaust induced cardiopulmonary toxicity in a hatchling chick model Texte intégral
2020
Jiang, Qixiao | Xu, Xiaohui | Zhang, Chao | Luo, Jing | Lv, Na | Shi, Limei | Ji, Andong | Gao, Mengyu | Chen, Feilong | Cui, Lianhua | Zheng, Yuxin
Diesel exhaust (DE) had been associated with cardiopulmonary toxicity and developmental toxicity. However, neonatal very early-in-life exposure had not been extensively studied previously. To investigate the potential effects of neonatal very early-in-life exposure to DE, a brand-new chicken embryo in ovo exposure model had been established, with which the cardiopulmonary effects of DE exposure via air cell infusion at embryonic day 18/19 (ED18/19) were assessed in hatchling chicks post-hatch 0-, 1-, or 2-weeks. Heart rates were assessed with electrocardiography. Cardiac and pulmonary morphologies were investigated with histopathological methods. Cardiopulmonary effects were explored with immunohistochemistry for alpha smooth muscle actin (alpha-SMA). In further investigations, the expression levels of phosphorylated AhR, serum levels of TGF-β1, phosphorylated SMAD2/3 and phosphorylated p38MAPK were assessed in the lung tissues. Significantly elevated heart rates, increased right ventricular wall thickness and cardiac collagen deposition were observed in the hearts of exposed hatchling chicks. Significantly increased collagen deposition as well as increased vascular alpha-SMA layer thickness/decreased cavity area were observed in exposed animal lungs. These effects persisted up to two weeks post-hatch. Mechanistic studies revealed elevated phosphorylated AhR expression levels in 0-week and 1-week chicken lungs, while phosphorylated SMAD2/3 levels significantly increased in 0-week chicken lungs but decreased in 2-week chicken lungs following DE exposure. Phosphorylation of p38MAPK did not remarkably increase until 2-week post-hatch. In summary, the novel chicken neonatal very early-in-life exposure model effectively exposed the chicken embryos during the neonatal initial breathing, resulting in cardiopulmonary toxicity, which is associated with AHR, TGF-β1 and MAPK signaling.
Afficher plus [+] Moins [-]Modifications of autophagy influenced the Alzheimer-like changes in SH-SY5Y cells promoted by ultrafine black carbon Texte intégral
2019
Shang, Yu | Liu, Mingyuan | Wang, Tiantian | Wang, Lu | He, Huixin | Zhong, Yufang | Qian, Guangren | An, Jing | Zhu, Tong | Qiu, Xinghua | Shang, Jing | Chen, Yingjun
Ambient ultrafine black carbon (uBC) can potentially cross blood-brain barrier, however, very little is currently known about the effects they may have on central nervous system. This study aimed to explore the roles of autophagy in Alzheimer-like pathogenic changes promoted by uBC in SH-SY5Y cells. We firstly found uBC could cause cytotoxicity and oxidative stress in SH-SY5Y cells. Additionally we found uBC initiated progressive development of Alzheimer's disease (AD) associated features, mainly including neuro-inflammation and phosphorylation of tau protein (p-Tau) accumulation. Meanwhile, autophagy process was activated by uBC probably through phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. RNA interference and autophagosome-lysosome fusion inhibitor were applied to block autophagy process at different stages. Autophagy dysfunction at the initial membrane expansion stage could aggravate p-Tau accumulation and other Alzheimer-like changes in SH-SY5Y cells promoted by uBC. However, autophagy inhibition at the final stage could alleviate p-Tau accumulation caused by uBC. This suggested that inhibition of the infusion of autophagosome and lysosome could possibly activate ubiquitination degradation pathway to regulate p-Tau equilibrium in SH-SY5Y cells. Our findings further raise the concerns about the effects of uBC on the risk of AD and indicate potential roles of autophagy in early Alzheimer-like pathogenic changes caused by ambient uBC.
Afficher plus [+] Moins [-]Activation of NF-κB pathways mediating the inflammation and pulmonary diseases associated with atmospheric methylamine exposure Texte intégral
2019
Li, Guiying | LIao, Yi | Hu, Junjie | Lu, Lirong | Zhang, Yanan | Li, Bing | An, Taicheng
The effects of methylamine on human health have been debated for several years, but the exact adverse outcomes and definite signaling cascades have not been elucidated yet. Herein, a NF-κB signal pathway, a positive regulator of inflammation was identified as the main pathway of methylamine exposure induced adverse effects in bronchial airway cells (16HBE) for the first time. The results indicated that methylamine could stimulate the overproduction of reactive oxygen species (ROS) in cytoplasm and mitochondria of 16HBE cells. Moreover, ROS accelerate the translocation and phosphorylation of NF-κB in nucleic and promote the expression of inflammatory, such as IL-8 and IL-6. As a result, methylamine was found to be increased ROS-mediated NF-κB activation in cells, leading to the production of inflammatory cytokine. Furthermore, the results also showed that methylamine could affect the expression of cytokines related genes, p53, STAT3, Bcl2, c-myc, Cyclin D, Hes1, Mcl-1, TGF-β2. The breakdown of those cell proliferation and apoptosis related genes were leading to a common toxic mechanism of cell death. In summary, our work uncovers a mechanism by which methylamine can induce the formation of inflammation response and demonstrates potential inflammation and carcinogenesis in human airway cell upon the methylamine inhaled.
Afficher plus [+] Moins [-]