Affiner votre recherche
Résultats 1-10 de 32
The direct and indirect effects of copper on vector-borne disease dynamics
2021
Neff, Erik | Dharmarajan, Guha
Metal pollution is a growing concern that affects the health of humans and animals globally. Copper is an essential insect micronutrient required for respiration, pigmentation and oxidative stress protection but can also act as a potentially toxic trace element. While several studies have focused on the negative fitness effects of copper on the aquatic larvae of mosquitoes, the effects of larval copper exposure on adult mosquito fitness (i.e., survival and fecundity) and their ability to transmit parasites (i.e., vector competence) remains unclear. Here, using a well-studied model vector-parasite system, the mosquito Aedes aegypti and parasite Dirofilaria immitis, we show that sublethal copper exposure in larval mosquitoes alters adult female fecundity and vector competence. Specifically, mosquitoes exposed to copper had a hormetic fecundity response and mosquitoes exposed to 600 μg/L of copper had significantly fewer infective parasite larvae than control mosquitoes not exposed to copper. Thus, exposure of mosquito larvae to copper levels far below EPA-mandated safe drinking water limits (1300 μg/L) can impact vector-borne disease dynamics not only by reducing mosquito abundance (through increased larval mortality), but also by reducing parasite transmission risk. Our results also demonstrated that larval copper is retained through metamorphosis to adulthood in mosquitoes, indicating that these insects could transfer copper from aquatic to terrestrial foodwebs, especially in urban areas where they are abundant. To our knowledge this is the first study to directly link metal exposure with vector competence (i.e., ability to transmit parasites) in any vector-parasite system. Additionally, it also demonstrates unequivocally that mosquitoes can transfer contaminants from aquatic to terrestrial ecosystems. These results have broad implications for public health because they directly linking contaminants and vector-borne disease dynamics, as well as linking mosquitoes and contaminant dynamics.
Afficher plus [+] Moins [-]Sub-lethal and lethal toxicities of elevated CO2 on embryonic, juvenile, and adult stages of marine medaka Oryzias melastigma
2018
Lee, Changkeun | Kwon, Bong-Oh | Hong, Seongjin | Noh, Junsung | Lee, Junghyun | Ryu, Jongseong | Kang, Seong-Gil | Khim, Jong Seong
The potential leakage from marine CO2 storage sites is of increasing concern, but few studies have evaluated the probable adverse effects on marine organisms. Fish, one of the top predators in marine environments, should be an essential representative species used for water column toxicity testing in response to waterborne CO2 exposure. In the present study, we conducted fish life cycle toxicity tests to fully elucidate CO2 toxicity mechanism effects. We tested sub-lethal and lethal toxicities of elevated CO2 concentrations on marine medaka (Oryzias melastigma) at different developmental stages. At each developmental stage, the test species was exposed to varying concentrations of gaseous CO2 (control air, 5%, 10%, 20%, and 30%), with 96 h of exposure at 0–4 d (early stage), 4–8 d (middle stage), and 8–12 d (late stage). Sub-lethal and lethal effects, including early developmental delays, cardiac edema, tail abnormalities, abnormal pigmentation, and mortality were monitored daily during the 14 d exposure period. At the embryonic stage, significant sub-lethal and lethal effects were observed at pH < 6.30. Hypercapnia can cause long-term and/or delayed developmental embryonic problems, even after transfer back to clean seawater. At fish juvenile and adult stages, significant mortality was observed at pH < 5.70, indicating elevated CO2 exposure might cause various adverse effects, even during short-term exposure periods. It should be noted the early embryonic stage was found more sensitive to CO2 exposure than other developmental stages of the fish life cycle. Overall, the present study provided baseline information for potential adverse effects of high CO2 concentration exposure on fish developmental processes at different life cycle stages in marine ecosystems.
Afficher plus [+] Moins [-]Combining short-term bioassays using fish and crustacean model organisms with ToxCast in vitro data and broad-spectrum chemical analysis for environmental risk assessment of the river water (Sava, Croatia)
2022
Malev, Olga | Babić, Sanja | Sima Cota, Anja | Stipaničev, Draženka | Repec, Siniša | Drnić, Martina | Lovrić, Mario | Bojanić, Krunoslav | Radić Brkanac, Sandra | Čož-Rakovac, Rozelindra | Klobučar, Göran
This study focused on the short-term whole organism bioassays (WOBs) on fish (Danio rerio) and crustaceans (Gammarus fossarum and Daphnia magna) to assess the negative biological effects of water from the major European River Sava and the comparison of the obtained results with in vitro toxicity data (ToxCast database) and Risk Quotient (RQ) methodology. Pollution profiles of five sampling sites along the River Sava were assessed by simultaneous chemical analysis of 562 organic contaminants (OCs) of which 476 were detected. At each sampling site, pharmaceuticals/illicit drugs category was mostly represented by their cumulative concentration, followed by categories industrial chemicals, pesticides and hormones. An exposure-activity ratio (EAR) approach based on ToxCast data highlighted steroidal anti-inflammatory drugs, antibiotics, antiepileptics/neuroleptics, industrial chemicals and hormones as compounds with the highest biological potential. Summed EAR-based prediction of toxicity showed a good correlation with the estimated toxicity of assessed sampling sites using WOBs. WOBs did not exhibit increased mortality but caused various sub-lethal biological responses that were dependant relative to the sampling site pollution intensity as well as species sensitivity. Exposure of G. fossarum and D. magna to river water-induced lower feeding rates increased GST activity and TBARS levels. Zebrafish D. rerio embryo exhibited a significant decrease in heartbeat rate, failure in pigmentation formation, as well as inhibition of ABC transporters. Nuclear receptor activation was indicated as the biological target of greatest concern based on the EAR approach. A combined approach of short-term WOBs, with a special emphasis on sub-lethal endpoints, and chemical characterization of water samples compared against in vitro toxicity data from the ToxCast database and RQs can provide a comprehensive insight into the negative effect of pollutants on aquatic organisms.
Afficher plus [+] Moins [-]The pigmentation interference of bisphenol F and bisphenol A
2020
Mu, Xiyan | Liu, Jia | Yuan, Lilai | Huang, Ying | Qian, Le | Wang, Chengju
Bisphenol A (BPA) and bisphenol F (BPF) are widely distributed in the environment and daily consumptions, leading to exposure toward human and environmental animals. The potential risk of bisphenol analogs on pigment and skin health is not well documented. In this study, we found that 0.05 mg/L BPF (tolerated daily intake (TDI) value of BPA) affected the particle size and color density of zebrafish melanin. While BPA caused less depigmentation effect toward zebrafish with effective concentration of 5.0 mg/L. The downregulation of melanin synthases induced by BPF is associated with the reduction in melanin. Molecular dynamics indicated that both BPF and BPA could act as ligands of zebrafish and human Tyr family proteins; however, these compounds have completely different energetics and spatial steric effects, potentially explaining their varying depigmentation effects. Additionally, an in vitro assay using A375 melanoma cells demonstrated that the inhibitory effect of BPF on human melanin production was primarily attributed to Tyr inhibition. These findings provide an important basis for understanding the molecular mechanisms of BPF and BPA in melanin inhibition, and the results reflect the skin pigmentation interference risk of these compounds, which are ubiquitous in everyday personal products.
Afficher plus [+] Moins [-]An endocrine-disrupting agricultural contaminant impacts sequential female mate choice in fish
2018
Tomkins, Patrick | Saaristo, Minna | Bertram, Michael G. | Michelangeli, Marcus | Tomkins, Raymond B. | Wong, Bob B.M.
The environmental impact of endocrine-disrupting chemicals (EDCs)—compounds that interfere with endocrine system function at minute concentrations—is now well established. In recent years, concern has been mounting over a group of endocrine disruptors known as hormonal growth promotants (HGPs), which are natural and synthetic chemicals used to promote growth in livestock by targeting the endocrine system. One of the most potent compounds to enter the environment as a result of HGP use is 17β-trenbolone, which has repeatedly been detected in aquatic habitats. Although recent research has revealed that 17β-trenbolone can interfere with mechanisms of sexual selection, its potential to impact sequential female mate choice remains unknown, as is true for all EDCs. To address this, we exposed female guppies (Poecilia reticulata) to 17β-trenbolone at an environmentally relevant level (average measured concentration: 2 ng/L) for 21 days using a flow-through system. We then compared the response of unexposed and exposed females to sequentially presented stimulus (i.e., unexposed) males that varied in their relative body area of orange pigmentation, as female guppies have a known preference for orange colouration in males. We found that, regardless of male orange pigmentation, both unexposed and exposed females associated with males indiscriminately during their first male encounter. However, during the second male presentation, unexposed females significantly reduced the amount of time they spent associating with low-orange males if they had previously encountered a high-orange male. Conversely, 17β-trenbolone-exposed females associated with males indiscriminately (i.e., regardless of orange colouration) during both their first and second male encounter, and, overall, associated with males significantly less than did unexposed females during both presentations. This is the first study to demonstrate altered sequential female mate choice resulting from exposure to an endocrine disruptor, highlighting the need for a greater understanding of how EDCs may impact complex mechanisms of sexual selection.
Afficher plus [+] Moins [-]Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms
2016
Production of bisphenol A (BPA) analogues such as bisphenol F (BPF) and bisphenol AF (BPAF) has recently increased, due to clear evidence of adverse effects of BPA on humans and wildlife. Bisphenols (BPs) have already been released into aquatic environment without previous available information about potential adverse effects of BPs and their potential risk to aquatic ecosystems. In this study, lethal and sublethal effects of BPF and BPAF to bacteria, algae, crustacea and fish embryos were investigated and the results were compared to the adverse effects obtained for BPA. We found that BPAF was the most toxic compound to Daphnia magna, Danio rerio and Desmodesmus subspicatus; the lowest 72 h EC50 (median effective concentration) and 21 d NOEC (no observed effect concentration) values were determined at 2.2 mg/L regarding zebrafish hatching success and 0.23 mg/L of BPAF obtained for growth and reproduction of water fleas, respectively. In most cases, BPA was more toxic to D. magna, D. rerio and D. subspicatus in comparison to BPF, but pigmentation of zebrafish embryos after 48 h of exposure and reproduction of water fleas after 21-day D. magna reproductive test exposure to BPF were much more impaired. Risk quotients (measured environmental concentration/21 d NOEC) showed that BPA, BPF and BPAF are recently not chronically hazardous to the survival, reproduction and growth of water fleas in surface waters. On the other hand, we importantly show that currently present BPAF concentrations in surface waters could cause a potential ecological risk to aquatic organisms. In the near future, higher concentrations of BPF and BPAF in surface waters are anticipated and for this reason further testing using test systems with various aquatic species and endpoints are needed to provide additional information about toxic impacts of BPF and BPAF on aquatic biota.
Afficher plus [+] Moins [-]Testicular morphometric changes in neotropical anurans from agroecosystems
2021
Rezende, Wadson Rodrigues | Santos, Lia Raquel de Souza | Franco-Belussi, Lilian | De Oliveira, Classius
One of the causes of the global decline of amphibians is agricultural activity, responsible for causing habitat fragmentation and bringing a range of agrochemicals and fertilizers in the environment, compounds with a potential disrupting effect on non-target organisms, such as frogs. Exposure to these compounds has numerous harmful effects on the testes of these animals, which can compromise reproduction and, consequently, the maintenance of their communities. In this context, we compared the morphology and morphometry of the testes of three species of neotropical anurans (Physalaemus cuvieri, Dendropsophus minutus, and Boana albopunctata) from an agricultural area and a conservation unit. Histologically, the testicular morphology of the species was similar for both environments; however, morphometrically, there was a difference in the measured testicular parameters (locular area and area of spermatogenic cysts). Physalaemus cuvieri presented higher averages of locular and spermatogonial area in the agricultural environment, whereas the area occupied by the spermatozoa was smaller. Additionally, the testicular pigmentation, which is only present in this species, was greater in animal from the agricultural area. In D. minutus, the locular, spermatogonial, and sperm areas showed lower values in the agricultural area, whereas in B. albopunctata, the opposite pattern was found, with the area of the locule, spermatocytes, and spermatozoids being higher. Agricultural activities influence the testicular metric parameters in different species, and our results suggest that D. minutus is most sensitive to anthropic pressures. The least sensitive species is B. albopunctata. We highlight the importance of evaluating different species, since each species responds differently to agricultural activities.
Afficher plus [+] Moins [-]Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management
2021
Rahaman, Md Shiblur | Rahman, Md Mostafizur | Mise, Nathan | Sikder, Md Tajuddin | Ichihara, Gaku | Uddin, Md Khabir | Kurasaki, Masaaki | Ichihara, Sahoko
Arsenic is a well-recognized environmental contaminant that occurs naturally through geogenic processes in the aquifer. More than 200 million people around the world are potentially exposed to the elevated level of arsenic mostly from Asia and Latin America. Many adverse health effects including skin diseases (i.e., arsenicosis, hyperkeratosis, pigmentation changes), carcinogenesis, and neurological diseases have been reported due to arsenic exposure. In addition, arsenic has recently been shown to contribute to the onset of non-communicable diseases, such as diabetes mellitus and cardiovascular diseases. The mechanisms involved in arsenic-induced diabetes are pancreatic β-cell dysfunction and death, impaired insulin secretion, insulin resistance and reduced cellular glucose transport. Whereas, the most proposed mechanisms of arsenic-induced hypertension are oxidative stress, disruption of nitric oxide signaling, altered vascular response to neurotransmitters and impaired vascular muscle calcium (Ca²⁺) signaling, damage of renal, and interference with the renin-angiotensin system (RAS). However, the contributions of arsenic exposure to non-communicable diseases are complex and multifaceted, and little information is available about the molecular mechanisms involved in arsenic-induced non-communicable diseases and also no suitable therapeutic target identified yet. Therefore, in the future, more basic research is necessary to identify the appropriate therapeutic target for the treatment and management of arsenic-induced non-communicable diseases. Several reports demonstrated that a daily balanced diet with proper nutrient supplements (vitamins, micronutrients, natural antioxidants) has shown effective to reduce the damages caused by arsenic exposure. Arsenic detoxication through natural compounds or nutraceuticals is considered a cost-effective treatment/management and researchers should focus on these alternative options. This review paper explores the scenarios of arsenic contamination in groundwater with an emphasis on public health concerns. It also demonstrated arsenic sources, biogeochemistry, toxicity mechanisms with therapeutic targets, arsenic exposure-related human diseases, and onsets of cardiovascular diseases as well as feasible management options for arsenic toxicity.
Afficher plus [+] Moins [-]Carotenoid- but not melanin-based plumage coloration is negatively related to metal exposure and proximity to the road in an urban songbird
2020
Grunst, Melissa L. | Grunst, Andrea S. | Pinxten, Rianne | Bervoets, Lieven | Eens, Marcel
Rapid urbanization is a global phenomenon that is increasingly exposing organisms to novel stressors. These novel stressors can affect diverse aspects of organismal function, including development of condition-dependent ornaments, which play critical roles in social and sexual selection. We investigated the relationship between metal pollution, proximity to roads, and carotenoid- and melanin-based plumage coloration in a common songbird, the great tit (Parus major). We studied populations located across a well-characterized metal pollution gradient and surrounded by roadway networks. Metal exposure and road-associated pollution could reduce carotenoid-based pigmentation by inducing oxidative stress or affecting habitat quality, but metals could also enhance melanin-based pigmentation, through effects on melanogenesis and testosterone concentrations. Using a large sample size (N > 500), we found that birds residing close to a point source for metals had reduced ultraviolet chroma, a component of carotenoid-based pigmentation. Moreover, birds with high feather metal concentrations had lower carotenoid chroma, hue, and ultraviolet chroma, with effects modified by age class. Birds residing closer to roads also had lower carotenoid chroma and hue. Melanin-based pigmentation showed high between-year repeatability, and no association with anthropogenic pollution. Results suggest that carotenoid-, but not melanin-, based pigmentation is negatively affected by multiple anthropogenic stressors. We are the first to demonstrate a negative association between roads and a plumage-based signaling trait, which could have important implications for sexual signaling dynamics in urban landscapes.
Afficher plus [+] Moins [-]Role of the proteome in providing phenotypic stability in control and ectomycorrhizal poplar plants exposed to chronic mild Pb stress
2020
Szuba, Agnieszka | Marczak, Łukasz | Kozłowski, Rafał
Lead is a dangerous pollutant that accumulates in plant tissues and causes serious damage to plant cell macromolecules. However, plants have evolved numerous tolerance mechanisms, including ectomycorrhizae, to maintain cellular Pb²⁺ at the lowest possible level. When those mechanisms are successful, Pb-exposed plants should exhibit no negative phenotypic changes. However, actual molecular-level plant adjustments at Pb concentrations below the toxicity threshold are largely unknown, similar to the molecular effects of protective ectomycorrhizal root colonization. In this study, we (1) determined the molecular adjustments in plants exposed to Pb but without visible Pb stress symptoms and (2) examined ectomycorrhizal root colonization (the role of fungal biofilters) with respect to molecular-level Pb perception by plant root cells. Biochemical, microscopic, proteomic and metabolomic studies were performed to determine the molecular status of Populus × canescens microcuttings grown in agar medium enriched with 0.75 mM Pb(NO₃)₂. Noninoculated and inoculated with Paxillus involutus poplars were analyzed in two independent comparisons of the corresponding control and Pb treatments. After six weeks of growth, Pb caused no negative phenotypic effects. No Pb-exposed poplar showed impaired growth or decreased leaf pigmentation. Proteomic signals of intensified Pb sequestration in the plant cell wall and vacuoles, cytoskeleton modifications, H⁺-ATPase-14-3-3 interactions, and stabilization of protein turnover in chronically Pb-exposed plants co-occurred with high metabolomic stability. There were no differentially abundant root primary metabolites; only a few differentially abundant root secondary metabolites and no Pb-triggered ROS burst were observed. Our results strongly suggest that proteome adjustments targeting Pb sequestration and ROS scavenging, which are considerably similar but less intensive in ectomycorrhizal poplars than in control poplars due to the P. involutus biofilter (as confirmed in a mineral study), were responsible for the metabolomic and phenotypic stability of poplars exposed to chronic mild Pb stress.
Afficher plus [+] Moins [-]