Affiner votre recherche
Résultats 1-5 de 5
Soil moisture influences the avoidance behavior of invertebrate species in anthropogenic metal(loid)-contaminated soils
2019
González-Alcaraz, M Nazaret | Malheiro, Catarina | Cardoso, Diogo N. | Loureiro, Susana
Water availability is paramount in the response of soil invertebrates towards stress situations. This study aimed to evaluate the effects of forecasted soil moisture scenarios on the avoidance behavior of two invertebrate species (the arthropod Folsomia candida and the soft-bodied oligochaete Enchytraeus crypticus) in soils degraded by different types of anthropogenic metal(loid) contamination (mining soil and agricultural soil affected by industrial chemical wastes). Different soil moisture contents (expressed as % of the soil water holding capacity, WHC) were evaluated: 50% (standard soil moisture conditions for soil invertebrates' tests); 75% (to simulate increasing soil water availability after intense rainfalls and/or floods); 40%, 30%, 25% and 20% (to simulate decreasing soil water availability during droughts). Invertebrates’ avoidance behavior and changes in soil porewater major ions and metal(loid)s were assessed after 48 h exposure. Soil incubations induced a general solubilization/mobilization of porewater major ions, while higher soil acidity favored the solubilization/mobilization of porewater metal(loid)s, especially at 75% WHC. Folsomia candida preferred soils moistened at 50% WHC, regardless the soils were contaminated or not and the changing soil porewater characteristics. Enchytraeus crypticus avoided metal(loid) contamination, but this depended on the soil moisture conditions and the corresponding changes in porewater characteristics: enchytraeids lost their capacity to avoid contaminated soils under water stress situations (75% and 20–25% WHC), but also when contaminated soils had greater water availability than control soils. Therefore, forecasted soil moisture scenarios induced by global warming changed soil porewater composition and invertebrates capacity to avoid metal(loid)-contaminated soils.
Afficher plus [+] Moins [-]Reduced soil water availability did not protect two competing grassland species from the negative effects of increasing background ozone
2012
Wagg, Serena | Mills, Gina | Hayes, Felicity | Wilkinson, Sally | Cooper, David | Davies, William J.
Two common (semi-) natural temperate grassland species, Dactylis glomerata and Ranunculus acris, were grown in competition and exposed to two watering regimes: well-watered (WW, 20–40% v/v) and reduced-watered (RW, 7.5–20% v/v) in combination with eight ozone treatments ranging from pre-industrial to predicted 2100 background levels. For both species there was a significant increase in leaf damage with increasing background ozone concentration. RW had no protective effect against increasing levels of ozone-induced senescence/injury. In high ozone, based on measurements of stomatal conductance, we propose that ozone influx into the leaves was not prevented in the RW treatment, in D. glomerata because stomata were a) more widely open than those in less polluted plants and b) were less responsive to drought. Total seasonal above ground biomass was not significantly altered by increased ozone; however, ozone significantly reduced root biomass in both species to differing amounts depending on watering regime.
Afficher plus [+] Moins [-]Soil physical characteristics after EDTA washing and amendment with inorganic and organic additives
2014
Zupanc, Vesna | Kastelec, Damijana | Lestan, Domen | Grcman, Helena
Soil washing has been established as suitable remediation technology, with most research focused on metal removing efficiency and toxic effect on plants, less on the influence on soil physical characteristics, which was the focus of this study. In soil column experiment highly contaminated soil and soil washed with EDTA, mixed with additives (gypsum, hydrogel, manure, peat) were tested. White clover was used as a soil cover. Yield, metal concentration in soil and plant, aggregate fractionation and stability, saturated hydraulic conductivity and soil water retention of the soil were measured. Soil washing decreased metal concentration in soil and plants, but yield of white clover on remediated soil was significantly lower compared to the original soil. Significant differences in water retention characteristics, aggregate fractionation and stability between original and remediated soil have been determined. Gypsum, hydrogel and peat increased plant available water, manure and peat increased yield on remediated soil.
Afficher plus [+] Moins [-]Quantitative characterization of pore structure of several biochars with 3D imaging
2018
Hyväluoma, Jari | Kulju, Sampo | Hannula, Markus | Wikberg, Hanne | Källi, Anssi | Rasa, Kimmo
Pore space characteristics of biochars may vary depending on the used raw material and processing technology. Pore structure has significant effects on the water retention properties of biochar amended soils. In this work, several biochars were characterized with three-dimensional imaging and image analysis. X-ray computed microtomography was used to image biochars at resolution of 1.14 μm and the obtained images were analysed for porosity, pore size distribution, specific surface area and structural anisotropy. In addition, random walk simulations were used to relate structural anisotropy to diffusive transport. Image analysis showed that considerable part of the biochar volume consist of pores in size range relevant to hydrological processes and storage of plant available water. Porosity and pore size distribution were found to depend on the biochar type and the structural anisotopy analysis showed that used raw material considerably affects the pore characteristics at micrometre scale. Therefore, attention should be paid to raw material selection and quality in applications requiring optimized pore structure.
Afficher plus [+] Moins [-]Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China
2016
Liu, Chen | Wang, Honglan | Tang, Xiangyu | Guan, Zhuo | Reid, Brian J. | Rajapaksha, Anushka Upamali | Ok, Yong Sik | Sun, Hui
A hydrologically contained field study, to assess biochar (produced from mixed crop straws) influence upon soil hydraulic properties and dissolved organic carbon (DOC) leaching, was conducted on a loamy soil (entisol). The soil, noted for its low plant-available water and low soil organic matter, is the most important arable soil type in the upper reaches of the Yangtze River catchment, China. Pore size distribution characterization (by N₂ adsorption, mercury intrusion, and water retention) showed that the biochar had a tri-modal pore size distribution. This included pores with diameters in the range of 0.1–10 μm that can retain plant-available water. Comparison of soil water retention curves between the control (0) and the biochar plots (16 t ha⁻¹ on dry weight basis) demonstrated biochar amendment to increase soil water holding capacity. However, significant increases in DOC concentration of soil pore water in both the plough layer and the undisturbed subsoil layer were observed in the biochar-amended plots. An increased loss of DOC relative to the control was observed upon rainfall events. Measurements of excitation-emission matrix (EEM) fluorescence indicated the DOC increment originated primarily from the organic carbon pool in the soil that became more soluble following biochar incorporation.
Afficher plus [+] Moins [-]