Affiner votre recherche
Résultats 1-10 de 20
Improved soil-crop system management aids in NH3 emission mitigation in China Texte intégral
2021
Sha, Zhipeng | Liu, Hejing | Wang, Jingxia | Ma, Xin | Liu, Xuejun | Misselbrook, T. (Tom)
High ammonia (NH₃) emissions from fertilized soil in China have led to various concerns regarding environmental safety and public health. In response to China's blue skies protection campaign, effective NH₃ reduction measures need to consider both mitigation efficiency and food security. In this context, we conducted a meta-analysis (including 2980 observations from 447 studies) to select effective measures based on absolute (AV) and yield-scaled (YSAV) NH₃ volatilization reduction potential, with the aim of establishing a comprehensive NH₃ mitigation framework covering various crop production sectors, and offering a range of potential solutions. The results showed that manipulating crop density, using an intermittent irrigation regime for paddy field rice, applying N as split applications or partially substituting inorganic fertilizer N with organic N sources could achieve reductions in AV and YSAV reduction of 10–20 %; adopting drip irrigation regimes, adding water surface barrier films to paddy fields, or using double inhibitor (urease and nitrification), slow-release or biofertilizers could achieve 20–40 % mitigation; plastic film mulching, applying fertilizer by irrigation or using controlled-release fertilizers could yield 40–60 % reduction; use of a urease inhibitor, fully substituting fertilizer N with organic N, or applying fertilizer by deep placement could decrease AV and YSAV by over 60 %. In addition, use of soil amendments, applying suitable inorganic N sources, or adopting crop rotation, intercropping or a rice-fish production model all had significant benefits to control AV. The adoption of any particular strategy should consider local accessibility and affordability, direct intervention by local/government authorities and demonstration to encourage the uptake of technologies and practices, particularly in NH₃ pollution hotspot areas. Together, this could ensure food security and environmental sustainability.
Afficher plus [+] Moins [-]Plant growth responses to inorganic environmental contaminants are density-dependent: Experiments with copper sulfate, barley and lettuce Texte intégral
2014
Hansi, Mari | Weidenhamer, Jeffrey D. | Sinkkonen, Aki
The density-dependence of terrestrial plant–plant interactions in the presence of toxins has previously been explored using biodegradable compounds. We exposed barley and lettuce to four copper concentrations at four stand densities. We hypothesized that toxin effects would decrease and Cu uptake would increase at increasing plant densities. We analyzed toxin effects by (a) comparing plant biomasses and (b) using a recent regression model that has a separate parameter for the interaction of resource competition and toxin interference. Plant response to Cu was density-dependent in both experiments. Total Cu uptake by barley increased and the dose per plant decreased as plant density increased. This study is the first to demonstrate that plant density mediates plant response to metals in soil in a predictable way. This highlights the need to explore the mechanisms for and consequences of these effects, and to integrate the use of several plant densities into standard ecotoxicological testing.
Afficher plus [+] Moins [-]The combined effects of macrophytes (Vallisneria denseserrulata) and a lanthanum-modified bentonite on water quality of shallow eutrophic lakes: A mesocosm study Texte intégral
2021
Zhang, Xiumei | Zhen, Wei | Jensen, Henning S. | Reitzel, Kasper | Jeppesen, Erik | Liu, Zhengwen
Establishment of submerged macrophyte beds and application of chemical phosphorus inactivation are common lake restoration methods for reducing internal phosphorus loading. The two methods operate via different mechanisms and may potentially supplement each other, especially when internal phosphorous loading is continuously high. However, their combined effects have so far not been elucidated. Here, we investigated the combined impact of the submerged macrophyte Vallisneria denseserrulata and a lanthanum-modified bentonite (Phoslock®) on water quality in a 12-week mesocosm experiment. The combined treatment led to stronger improvement of water quality and a more pronounced reduction of porewater soluble reactive phosphorus than each of the two measures. In the combined treatment, total porewater soluble reactive phosphorus in the top 10 cm sediment layers decreased by 78% compared with the control group without Phoslock® and submerged macrophytes. Besides, in the upper 0–1 cm sediment layer, mobile phosphorus was transformed into recalcitrant forms (e.g. the proportion of HCl–P increased to 64%), while in the deeper layers, (hydr)oxides-bound phosphorus species increased 17–28%. Phoslock®, however, reduced the clonal growth of V. denseserrulata by 35% of biomass (dry weight) and 27% of plant density. Our study indicated that Phoslock® and submerged macrophytes may complement each other in the early stage of lake restoration following external nutrient loading reduction in eutrophic lakes, potentially accelerating the restoration process, especially in those lakes where the internal phosphorus loading is high.
Afficher plus [+] Moins [-]Observation and estimation of mercury exchange fluxes from soil under different crop cultivars and planting densities in North China Plain Texte intégral
2020
Gao, Yu | Wang, Zhangwei | Zhang, Xiaoshan | Wang, Chunjie
The emission of mercury (Hg) from cropland soil greatly affects the global Hg cycle. Combinations of different crop cultivars and planting densities will result in different light transmittance under canopies, which directly affects the solar and heat radiation flux received by the soil surface below crops. In turn, this might lead to differences in the soil–air total gaseous mercury (TGM) exchange under different cropping patterns. However, soil–air TGM exchange fluxes in croplands under differing canopies have been poorly investigated. Here, a one-year observation of TGM exchange flux was conducted for cropland soils covering five different crop cultivars and three planting densities in North China Plain using the dynamic flux chamber method. The results showed that light transmittance under the canopies was the key control on soil–air TGM exchange fluxes. High light transmittance can enhance soil TGM emission rates and increase the magnitude of diurnal variations in soil–air TGM exchange fluxes. Furthermore, we found that there were piecewise–function relationships (Peak function–constant equation) between light transmittance under the different canopies and the numbers of days after crop sowing. The soil–air TGM exchange fluxes showed a parabolic response to changes in light transmittance under the different canopies. A second-order model was established for the response relationship between soil–air TGM exchange flux and soil Hg concentration, total solar radiation above the canopy, and numbers of days after sowing. The estimated annual average soil–air TGM exchange flux was 5.46 ± 21.69 ng m⁻² h⁻¹ at corn–wheat rotation cropland with 30 cm row spacing using this second-order model. Our results might a data reference and a promising foundation for future model development of soil–air TGM exchange in croplands under different crop cultivars and planting densities.
Afficher plus [+] Moins [-]Assessment of the ameliorating effect of sedimentary iron inputs on sulfide stress in eelgrass beds Texte intégral
2020
Li, Shi-Qi | Zhang, Hong-Yu | Kang, Bin | Zhang, Qian | Li, Wen-Tao | Zhang, Pei-Dong
Iron is recognized as an efficient method to alleviate sulfide stress. This study tested the response of Zostera marina plants to different levels of sedimentary sulfides (100.0–818.7 μmol L⁻¹) and iron inputs (590.0–825.3 μg L⁻¹) in a field experiment performed over an eighty-day period. We measured plant responses in terms of shoot density and plant morphology and productivity. The relationship between the propagation effort (PE, in %) and sulfide content (S, in μmol L⁻¹) was expressed as: PE = −14.01 × ln (S) + 86.86 (R² = 0.99, p < .01), which indicates that the toxic limit of the pore-water sulfide concentration for the survival of eelgrass is 493 μmol L⁻¹. The addition of iron can reduce the toxicity of sulfides to eelgrass beds, resulting in an increase in plant density and productivity, and can even reverse the decline of eelgrass beds exposed to high sulfide concentrations.
Afficher plus [+] Moins [-]An effective seed protection method for planting Zostera marina (eelgrass) seeds: Implications for their large-scale restoration Texte intégral
2015
Zhang, Pei-Dong | Fang, Chao | Liu, Jie | Xu, Qiang | Li, Wen-Tao | Liu, Yan-Shan
We describe an innovative method of planting Zostera marina (eelgrass) seeds in which hessian bags filled with high-silted sediments are used as a seed protecting device. Here, we evaluated the effectiveness of the method through a field seed-sowing experiment over a three year period. The suitable seed planting density required by the seeds of Z. marina in this method was also investigated. In the spring following seed distribution, seedling establishment rate of Z. marina subjected to different seed densities of 200–500seedsbag−1 ranged from 16% to 26%. New eelgrass patches from seed were fully developed and well maintained after 2–3years following distribution. The seed planting density of 400seedsbag−1 may be the most suitable for the establishment of new eelgrass patches. Our results demonstrate that seed-based restoration can be an effective restoration tool and the technique presented should be considered for future large-scale Z. marina restoration projects.
Afficher plus [+] Moins [-]Effects of Plant Diversity and Plant Density on Ecosystem Functions in Floating Constructed Wetlands Texte intégral
2020
Plant species diversity could enhance plant productivity and pollutant removal efficiency in constructed wetlands (CWs). However, the potential importance of plant density for ecosystem functioning has largely been neglected. In this study, we conducted a factorial experiment in which three common plant species were planted in a gradient of species richness (one, two, and three) and seven species compositions at two densities (six and twelve individuals per microcosm). Plant total biomass and total organic carbon (TOC) and total inorganic nitrogen (TIN) removal efficiency were measured to explore the effect of plant species diversity and density on the ecosystem functioning of CWs. Results showed that (1) plant species richness had no significant effect on plant total biomass and TOC and TIN removal efficiency under high and low plant density. (2) There were significant differences in TIN removal efficiency among seven species compositions under low plant density; especially, the presence of Canna indica reduced the TIN removal efficiency. In contrast, species composition and species identity had no significant effect on ecosystem functioning under high plant density. (3) High plant density increased plant total biomass of C. indica monocultures, and also enhanced TIN removal efficiency in mixtures of two species. These results indicated C. indica alone may not be an ideal species for enhancing pollutant removal in constructed wetlands but planting at high density could mitigate its negative effect on ecosystem functioning.
Afficher plus [+] Moins [-]Remediation of Radiocesium-137 Affected Soil Using Napiergrass Under Different Planting Density and Cutting Frequency Regimes Texte intégral
2017
Kang, Dong-Jin | Ishii, Yasuyuki | Tazoe, Hirofumi | Isobe, Katsunori | Higo, Masao | Hosoda, Masahiro | Yamada, Masatoshi | Tokonami, Shinji
This study investigated the use of napiergrass (Pennisetum purpureum Schum.) to remediate soils highly contaminated with radiocesium-137 (¹³⁷Cs) in the town of Namie, Fukushima Prefecture, which is located around 9 km northwest of the Fukushima Daiichi Nuclear Power Plant, Japan. Field experiments were performed to investigate the remediation effects using two sites (paddy or upland grassland) as replicates, three planting densities (low, medium, and high density), and two different cutting frequencies (cut once or twice a year) over 2 consecutive years. Napiergrass can be more efficient than sorghum for ¹³⁷Cs remediation. The maximum ¹³⁷Cs removal ratio (CR, %) in napiergrass achieved with high-density planting (11 plants m⁻²) was between 0.32 and 0.57%. However, cutting frequency did not affect the CR. Higher biomass leads to a dilution of ¹³⁷Cs in cutting frequency. Therefore, we suggest that the greatest CR could be achieved through a high above ground biomass (high-density planting).
Afficher plus [+] Moins [-]Phytoremediation Potential of Vetiver Grass (Vetiveria zizanioides) for Treatment of Metal-Contaminated Water Texte intégral
2017
Suelee, Ashton Lim | Hasan, Sharifah Nur Munirah Syed | Kusin, Faradiella Mohd | Yusuff, Ferdaus Mohamat | Ibrahim, Zelina Zaiton
Phytoremediation using vetiver grass (Vetiveria zizanioides) has been regarded as an effective technique for removing contaminants in polluted water. This study was conducted to assess the removal efficiency of heavy metals (Cu, Fe, Mn, Pb, Zn) using vetiver grass (VG) at different root lengths and densities and to determine metals uptake rate by plant parts (root and shoot) between treatments (low and high concentration). Removal efficiency for heavy metals in water by VG is ranked in the order of Fe>Pb>Cu>Mn>Zn. Results showed that VG was effective in removing all the heavy metals, but removals greatly depend on root length, plant density and metal concentration. Longer root length and higher density showed greater removals of heavy metals due to increased surface area for metal absorption by plant roots. Results also demonstrated significant difference of heavy metals uptake in plant parts at different concentrations indicating that root has high tolerance towards elevated concentration of heavy metals. However, the effects were less significant in plant shoot suggesting that metals uptake were generally higher in root than in shoot. The findings have shown potential of VG in phytoremediation for heavy metals removal in water thus providing significant implication for treatment of metal-contaminated water.
Afficher plus [+] Moins [-]Paradoxical effects of density on measurement of copper tolerance in Silene paradoxa L Texte intégral
2018
Capuana, Maurizio | Colzi, Ilaria | Buccianti, Antonella | Coppi, Andrea | Palm, Emily | Del Bubba, Massimo | Gonnelli, Cristina
This work investigated if the assessment of tolerance to trace metals can depend on plant density in the experimental design. A non-metallicolous and a metallicolous populations of Silene paradoxa were hydroponically cultivated at increasing density and in both the absence (−Cu conditions) and excess of copper (+Cu conditions). In −Cu conditions, the metallicolous population showed a lower susceptibility to plant density in comparison to the non-metallicolous one, explained by a higher capacity of the metallicolous population to exploit resources. In +Cu conditions, an alleviating effect of increasing density was found in roots. Such effect was present to a greater extent in the non-metallicolous population, thus making the populations equally copper-tolerant at the highest density used. In shoots, an additive effect of increasing plant density to copper toxicity was reported. Its higher intensity in the metallicolous population reverted the copper tolerance relationship at the highest plant densities used. In both populations, a density-induced decrease in root copper accumulation was observed, thus concurring to the reported mitigation in +Cu conditions. Our work revealed the importance of density studies on the optimization of eco-toxicological bioassays and of metal tolerance assessment and it can be considered the first example of an alleviating effect of increasing plant number on copper stress in a metallophyte.
Afficher plus [+] Moins [-]