Affiner votre recherche
Résultats 1-10 de 722
Plastic burdens in northern fulmars from Svalbard: Looking back 25 years
2022
Collard, France | Bangjord, Georg | Herzke, Dorte | Gabrielsen, Geir W
peer reviewed | The northern fulmar Fulmarus glacialis ingests a larger number of (micro)plastics than many other seabirds due to its feeding habits and gut morphology. Since 2002, they are bioindicators of marine plastics in the North Sea region, and data are needed to extend the programme to other parts of their distribution areas, such as the Arctic. In this study, we provide data on ingested plastics by fulmars collected in 1997 in Kongsfjorden, Svalbard. An extraction protocol with KOH was used and for half of the birds, the gizzard and the proventricular contents were analysed separately. Ninety-one percent of the birds had ingested at least one piece of plastic with an average of 10.3 (±11.9 SD) pieces. The gizzards contained significantly more plastics than the proventriculus. Hard fragments and polyethylene were the most common characteristics. Twelve percent of the birds exceeded the EcoQO value of 0.1 g.
Afficher plus [+] Moins [-]Magnetic resonance imaging for non-invasive measurement of plastic ingestion in marine wildlife
2022
Anderssen, Kathryn E | Gabrielsen, Geir Wing | Kranz, Mathias | Collard, France
peer reviewed | Monitoring plastic ingestion by marine wildlife is important for both characterizing the extent of plastic pollution in the environment and understanding its effect on species and ecosystems. Current methods to detect plastic in the digestive system of animals are slow and invasive, such that the number of animals that can be screened is limited. In this article, magnetic resonance imaging (MRI) is investigated as a possible technology to perform rapid, non-invasive detection of plastic ingestion. Standard MRI methods were able to directly measure one type of plastic in a fulmar stomach and another type was able to be indirectly detected. In addition to MRI, other standard nuclear magnetic resonance (NMR) measurements were made. Different types of plastic were tested, and distinctive NMR signal characteristics were found in common for each type, allowing them to be distinguished from one another. The NMR results indicate specialized MRI sequences could be used to directly image several types of plastic. Although current commercial MRI technology is not suitable for field use, existing single-sided MRI research systems could be adapted for use outside the laboratory and become an important tool for future monitoring of wild animals.
Afficher plus [+] Moins [-]Investigation of microplastic pollution in Arctic fjord water: a case study of Rijpfjorden, Northern Svalbard
2022
Bao, Mengrong | Huang, Qinghui | Lu, Zhibo | Collard, France | Cai, Minggang | Huang, Peng | Yu, Yong | Cheng, Shuiping | An, Lihui | Wold, Anette | Gabrielsen, Geir Wing
peer reviewed | Microplastic contamination is an emerging issue in the marine environment including the Arctic. However, the occurrence of microplastics in the Arctic fjords remains less understood. Sample collections were conducted by trawling horizontally in surface water (0-0.4-m depth) and trawling vertically in the water column (0-200-m depth) to investigate the abundance, composition, and distribution of microplastics in the Rijpfjorden, Northern Svalbard, in the summer of 2017. Laser Direct Infrared chemical imaging technique was applied for the counting and identification of microplastic particles. A total of 1010 microplastic particles and 14 mesoplastics were identified from 41,038 particles in eight samples from the Rijpfjorden. The abundance of microplastics larger than 300 µm was 0.15 ± 0.19 n/m3 in surface water, and 0.15 ± 0.03 n/m3 in the water column of the Rijpfjorden. The microplastic particles identified in Rijpfjorden water consisted of 10 types of polymers. The dominant microplastics are polyurethane, polyethylene, polyvinyl acetate, polystyrene, polypropylene, and alkyd varnish. Historical ship activities and newly melted sea ice might be major sources of microplastics in the seawater of Rijpfjorden. In general, contamination of microplastics larger than 300 µm in Rijpfjorden water is at a low level in comparison to other polar waters. Further research is needed to confirm the origin and fate of microplastics below 300 µm in Arctic fjords.
Afficher plus [+] Moins [-]Microplastics in Flathead Lake, a large oligotrophic mountain lake in the USA
2022
Xiong, Xiong | Tappenbeck, Tyler H. | Wu, Chenxi | Elser, James J.
Microplastics are contaminants that are closely associated with human activity and are often abundant even in remote areas. As the largest natural freshwater lake in the western USA, Flathead Lake is a suitable site to study microplastics in lakes in less-populated areas of North America. Our assessment of microplastics in lake surface water samples showed that microplastic densities and concentrations in Flathead Lake were similar to those in other lakes located in less-populated areas around the world, with densities ranging from 8.00 × 10⁴ to 4.22 × 10⁵ particles/km² with a mean concentration of 1.89 × 10⁵ particles/km². Dry deposition rates for microplastics ranged from 4 to 140 particles/m²/day with an average of 69 particles/m²/day and were significantly higher in the fall. Microplastic concentrations in wet deposition ranged from 0.006 particles/mL to 0.050 particles/mL with highest concentrations in winter and lowest in summer. Fibrous microplastics were predominant in both lake water and atmospheric deposition. The high densities of microplastics in the sample sites located near the Flathead River inlet suggests that the river is an important source of microplastics to Flathead Lake. The high densities of microplastics and high proportions of non-fibrous microplastics near populated areas of the lake imply that local human activities also affect microplastics in Flathead Lake. Although the annual flux of microplastics in dry deposition was higher than that in wet deposition, the relatively modest difference suggests that precipitation might enhance the deposition of microplastics. The results of this study indicate that instituting increased control measures that target both reducing the microfibers generated by laundry and improving the overall level of plastic waste management in the watershed may help in controlling microplastic levels in Flathead Lake.
Afficher plus [+] Moins [-]Facile nanoplastics formation from macro and microplastics in aqueous media
2022
Peller, Julie R. | Mezyk, Stephen P. | Shidler, Sarah | Castleman, Joe | Kaiser, Scott | Faulkner, Richard F. | Pilgrim, Corey D. | Wilson, Antigone | Martens, Sydney | Horne, Gregory P.
The immense production of plastic polymers combined with their discordancy with nature has led to vast plastic waste contamination across the geosphere, from the oceans to freshwater reservoirs, wetlands, remote snowpacks, sediments, air and multiple other environments. These environmental pollutants include microplastics (MP), typically defined as small and fragmented plastics less than 5 mm in size, and nanoplastics (NP), particles smaller than a micrometer. The formation of micro and nanoplastics in aqueous media to date has been largely attributed to fragmentation of plastics by natural (i.e., abrasion, photolysis, biotic) or industrial processes. We present a novel method to create small microplastics (≲ 5 μm) and nanoplastics in water from a wide variety of plastic materials using a small volume of a solubilizer liquid, such as n-dodecane, in combination with vigorous mixing. When the suspensions or solutions are subjected to ultrasonic mixing, the particle sizes decrease. Small micro- and nanoparticles were made from commercial, real world and waste (aged) polyethylene, polystyrene, polycarbonate and polyethylene terephthalate, in addition to other plastic materials and were analyzed using dark field microscopy, Raman spectroscopy and particle size measurements. The presented method provides a new and simple way to create specific size distributions of micro- and nanoparticles, which will enable expanded research on these plastic particles in water, especially those made from real world and aged plastics. The ease of NP and small MP formation upon initial mixing simulates real world environments, thereby providing further insight into the behavior of plastics in natural settings.
Afficher plus [+] Moins [-]The role of nanoplastics on the toxicity of the herbicide phenmedipham, using Danio rerio embryos as model organisms
2022
Santos, Joana | Barreto, Angela | Sousa, Érika M.L. | Calisto, Vânia | Amorim, Mónica J.B. | Maria, Vera L.
Once in the aquatic ecosystems, nanoplastics (NPls) can interact with other contaminants acting as vectors of transport and altering their toxicological effects towards organisms. Thus, the present study aims to investigate how polystyrene NPls (44 nm) interact with the herbicide phenmedipham (PHE) and affect its toxicity to zebrafish embryos. Single exposures to 0, 0.015, 0.15, 1.5, 15 and 150 mg/L NPls and 0.02, 0.2, 2 and 20 mg/L PHE were performed. Embryos were also exposed to the binominal combinations: 0.015 mg/L NPls + 2 mg/L PHE, 0.015 mg/L NPls + 20 mg/L PHE, 1.5 mg/L NPls + 2 mg/L PHE and 1.5 mg/L NPls + 20 mg/L PHE. Due to the low solubility of PHE in water, a solvent control was performed (0.01% acetone). PHE was quantified. Mortality, heartbeat and hatching rate, malformations appearance, locomotor behavior and biomarkers related to oxidative stress, neurotransmission and energy budgets were analyzed. During 96 h, NPls and PHE single and combined exposures did not affect embryos development. After 120 h, NPls induced hyperactivity and PHE induced hypoactivity. After 96 h, NPls increased catalase activity and PHE increased glutathione S-transferases activity. On the combination 0.015 mg/L NPls + 20 mg/L PHE, hyperactivity behavior was found, similar to 0.015 mg/L NPls, and cholinesterase activity was inhibited. Additionally, the combination 1.5 mg/L NPls + 20 mg/L PHE increased both catalase and glutathione S-transferases activities. The combination NPls with PHE affected more biochemical endpoints than the single exposures, showing the higher effect of the binominal combinations. Dissimilar interactions effects – no interaction, synergism and antagonism – between NPls and PHE were found. The current study shows that the effects of NPls on bioavailability and toxicity of other contaminants (e.g. PHE) cannot be ignored during the assessment of NPls environmental behavior and risks.
Afficher plus [+] Moins [-]Effect of landfill age on the physical and chemical characteristics of waste plastics/microplastics in a waste landfill sites
2022
The landfills store a lot of waste plastics, thus it has been confirmed a main source for the occurrence of plastics/microplastic. Although there are some reports that microplastics (MPs) can generate in leachate and refuse samples from the landfill, it exist many blanks for the evolution of physical and chemical characteristics of waste plastics and microplastics with different landfill age. To explore the process that large pieces of plastic are fractured into microplastics, the waste plastics with landfill age from 7 to 30 years are surveyed from a typical landfill in Shanghai. The results show that PE and PP are the most common types of landfilling plastics, and their chemical composition also have changed due to the creation of CO and –OH. Moreover, the crystallinity is affected by plastic type and landfill age. The crystallinity of PP increased from 24.9% to 56.8%, but for PE, the crystallinity decreased from 55.6% to 20.8%. The mechanical properties of waste plastics were reduced significantly, which may be caused by changes in carbon-chain molecules. Al, Ti, Co, and other metal elements were detected on the plastic surface. The hydrophobic behavior of waste plastic is constantly decreasing (102.2°–80.1°) under long-term landfilling. By investigating the changes in the physical and chemical characteristics of waste plastics with different landfill age can shed light upon the process of environmental weathering of waste plastics. This provide theoretical guidance for reducing the transport of microplastics to the environment.
Afficher plus [+] Moins [-]Plastic pollution impacts on marine carbon biogeochemistry
2021
Galgani, Luisa | Loiselle, Steven A.
One of the major challenges in understanding the dynamics of the ocean’s health and functioning is the potential impact of the increasing presence of plastic. Besides the verified and macroscopic effects on marine wildlife and habitats, micro and macroplastics offer potential sites for microbial activity and chemical leaching. Most marine plastic is found initially in the upper meters of the water column, where fundamental biogeochemical processes drive marine productivity and food web dynamics. However, recent findings show a continuum of potential effects of these new marine components on carbon, nutrients and microbial processes. In the present analysis, we develop a common ground between these studies and we identify knowledge gaps where new research efforts should be focused, to better determine potential feedbacks of plastics on the carbon biogeochemistry of a changing ocean.
Afficher plus [+] Moins [-]In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes
2021
Ahamed, Ashiq | Liang, Lili | Chan, Wei Ping | Tan, Preston Choon Kiat | Yip, Nicklaus Tze Xuan | Bobacka, Johan | Veksha, Andrei | Yin, Ke | Lisak, Grzegorz
The valorization of municipal solid waste incineration bottom and fly ashes (IBA and IFA) as catalysts for thermochemical plastic treatment was investigated. As-received, calcined, and Ni-loaded ashes prepared via hydrothermal synthesis were used as low-cost waste-derived catalysts for in-line upgrading of volatile products from plastic pyrolysis. It was found that both IBA and air pollution control IFA (APC) promote selective production of BTEX compounds (i.e., benzene, toluene, ethylbenzene, and xylenes) without significantly affecting the formation of other gaseous and liquid species. There was insignificant change in the product distribution when electrostatic precipitator IFA (ESP) was used, probably due to the lack of active catalytic species. Calcined APC (C-APC) demonstrated further improvement in the BTEX yield that suggested the potential to enhance the catalytic properties of ashes through pre-treatment. By comparing with the leaching limit values stated in the European Council Decision, 2003/33/EC for the acceptance of hazardous waste at landfills, all the ashes applied remained in the same category after the calcination and pyrolysis processes, except the leaching of Cl⁻ from the ESP, which was around the borderline. Therefore, the use of ashes in catalytic reforming application do not significantly deteriorate their metal leaching behavior. Considering its superior catalytic activity towards BTEX formation, C-APC was loaded with Ni at 15 and 30 wt%. The Ni-loading favored an increase in overall oil yield, while reducing the gas yield when compared to the benchmark Ni loaded ZSM catalyst. However, Ni addition also caused the formation of more heavier hydrocarbons (C20–C35) that would require post-treatment to recover favorable products like BTEX.
Afficher plus [+] Moins [-]Tris(4-hydroxyphenyl)ethane (THPE), a trisphenol compound, is antiestrogenic and can retard uterine development in CD-1 mice
2020
Xiao, Han | Wang, Yue | Jia, Xiaojing | Yang, Lei | Wang, Xiaoning | Guo, Xuan | Zhang, Zhaobin
Tris (4-hydroxyphenyl)ethane (THPE), a trisphenol compound widely used as a branching agent and raw material in plastics, adhesives, and coatings is rarely regarded with concern. However, inspection of in vitro data suggests that THPE is an antagonist of estrogen receptors (ERs). Accordingly, we aimed to evaluate the antiestrogenicity of THPE in vivo and tested its effect via oral gavage on pubertal development in female CD-1 mice. Using uterotrophic assays, we found that THPE either singly, or combined with 17β-estradiol (E₂) (400 μg/kg bw/day) suppressed the uterine weights at low doses (0.1, 0.3, and 1 mg/kg bw/day) in 3-day treatment of weaning mice. When mice were treated with THPE during adolescence (for 10 days beginning on postnatal day 24), their uterine development was significantly retarded at doses of at least 0.1 mg/kg bw/day, manifest as decreased uterine weight, atrophic endometrial stromal cells and thinner columnar epithelial cells. Transcriptome analyses of uteri demonstrated that estrogen-responsive genes were significantly downregulated by THPE. Molecular docking shows that THPE fits well into the antagonist pocket of human ERα. These results indicate that THPE possesses strong antiestrogenicity in vivo and can disrupt normal female development in mice at very low dosages.
Afficher plus [+] Moins [-]