Affiner votre recherche
Résultats 1-10 de 10
Effects of forest management on mercury bioaccumulation and biomagnification along the river continuum
2022
Negrazis, Lauren | Kidd, Karen A. | Erdozain, Maitane | Emilson, Erik J.S. | Mitchell, Carl P.J. | Gray, Michelle A.
Forest management can alter the mobilization of mercury (Hg) into headwater streams and its conversion to methylmercury (MeHg), the form that bioaccumulates in aquatic biota and biomagnifies through food webs. As headwater streams are important sources of organic materials and nutrients to larger systems, this connectivity may also increase MeHg in downstream biota through direct or indirect effects of forestry on water quality or food web structure. In this study, we collected water, seston, food sources (biofilm, leaves, organic matter), five macroinvertebrate taxa and fish (slimy sculpin; Cottus cognata) at 6 sites representing different stream orders (1–5) within three river basins with different total disturbances from forestry (both harvesting and silviculture). Methylmercury levels were highest in water and some food sources from the basin with moderate disturbance (greater clearcutting but less silviculture). Water, leaves, stoneflies and fish increased in MeHg or total Hg along the river continuum in the least disturbed basin, and there were some dissipative effects of forest management on these spatial patterns. Trophic level (δ¹⁵N) was a significant predictor of MeHg (and total Hg in fish) within food webs across all 18 sites, and biomagnification slopes were significantly lower in the basin with moderate total disturbance but not different in the other two basins. The elevated MeHg in lower trophic levels but its reduced trophic transfer in the basin with moderate disturbance was likely due to greater inputs of sediments and of dissolved organic carbon that is more humic, as these factors are known to both increase transport of Hg to streams and its uptake in primary producers but to also decrease MeHg bioaccumulation in consumers. Overall, these results suggest that the type of disturbance from forestry affects MeHg bioaccumulation and trophic transfer in stream food webs and some longitudinal patterns along a river continuum.
Afficher plus [+] Moins [-]The effect of intervention in nickel concentrations on benthic macroinvertebrates: A case study of statistical causal inference in ecotoxicology
2020
Takeshita, Kazutaka M. | Hayashi, Takehiko I. | Yokomizo, Hiroyuki
Field survey-based ecological risk assessments for trace metals are conducted to examine the necessity and/or effectiveness of management intervention, such as setting of environmental quality standards. Observational datasets often involve confounders that may bias estimation of the effects of intervention (e.g., reduction of trace-metal concentrations through regulation). The field of ecotoxicology lags behind some other research fields in understanding proper analytical procedures for causal inference from observational datasets; there are only a few field survey-based ecotoxicological studies that have explicitly controlled for confounders in their statistical analyses. In the present study, we estimated the effect of intervention in nickel concentrations on Ephemeroptera, Plecoptera, and Trichoptera richness in rivers in Japan. We also provide detailed explanations for the backgrounds of spurious associations derived from confounders and on proper analytical procedures for obtaining an unbiased estimate of the targeted intervention effect by using regression analysis. We constructed a multiple regression model based on a causal diagram for aquatic insects and environmental factors, and on “the backdoor criterion,” that enabled us to determine the set of covariates required to obtain an unbiased estimate of the targeted intervention effect from regression coefficients. We found that management intervention in nickel concentrations may be ineffective compared to intervention in organic pollution, and that analysis ignoring the confounders overestimated the effect of intervention in nickel concentrations. Our results highlight the fact that confounders can lead to misjudging the necessity for management of anthropogenic chemical substances. Confounders should be explicitly specified and statistically controlled to achieve a comprehensive assessment of ecological risks for various substances.
Afficher plus [+] Moins [-]The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates
2011
Kefford, Ben J. | Marchant, Richard | Schäfer, Ralf B. | Metzeling, Leon | Dunlop, Jason E. | Choy, S. C. (Satish C.) | Goonan, Peter
The risk of chemicals for ecological communities is often forecast with species sensitivity distributions (SSDs) which are used to predict the concentration which will protect p% of species (PCₚ value). However, at the PCₚ value, species richness in nature would not necessary be p% less than at uncontaminated sites. The definition of species richness inherent to SSDs (contaminant category richness) contrasts with species richness typically measured in most field studies (point richness). We determine, for salinity in eastern Australia, whether these definitions of stream macroinvertebrate species richness are commensurable. There were strong relationships (r²≥0.87) between mean point species, family and Ephemeroptera, Trichoptera and Plecoptera species richness and their respective contamination category richness. Despite differences in the definition of richness used by SSDs and field biomonitoring, their results in terms of relative species loss from salinity in south-east Australia are similar. We conclude that in our system both definitions are commensurable.
Afficher plus [+] Moins [-]Estimating safe concentrations of trace metals from inter-continental field data on river macroinvertebrates
2012
Iwasaki, Yuichi | Ormerod, Steve J.
We derived safe concentrations (SCs) of copper, zinc, cadmium, and manganese using river macroinvertebrate surveys at over 400 individual sites on three continents represented by the UK, USA, and Japan. We related a standardized measure of EPT (Ephemeroptera, Plecoptera, and Trichoptera) taxon richness to dissolved metal concentrations and identified SCs as the thresholds at which effects became apparent. Estimated SCs (and 95% confidence interval, μg/L) for copper, zinc, cadmium, and manganese were 6.6 (1.2–14.2), 34 (11–307), 0.11 (0.06–0.49), and 7.1 (1.4–20.5), respectively. These values for copper, zinc, and cadmium overlapped closely with laboratory-derived SCs available from water quality criteria/standards in the USA/UK and also predicted no effect concentrations from European Union risk assessments. Such laboratory-derived SCs for manganese are unavailable. These results not only add considerable confidence to the application of existing metal standards, but illustrate also how standard values might be widely transportable geographically.
Afficher plus [+] Moins [-]The effects of conservation tillage practices on benthic invertebrate communities in headwater streams in southwestern Ontario, Canada
1997
Barton, D.R. | Farmer, M.E.D. (Department of Biology, University of Waterloo, Ontario, N2L 3G1 (Canada))
Bulk Deposition of Pesticides in a Canadian City: Part 2. Impact of Malathion Use Within City Limits
2015
Farenhorst, A. | Andronak, L. A. | McQueen, R. D. A.
Malathion is an organophosphate insecticide registered for use in cities throughout North America to control adult mosquitoes. The objective of this study was to determine the impact of urban malathion applications on the levels of malathion detected in bulk deposition. In 2010, malathion was applied by the City of Winnipeg’s Insect Control Branch for a total amount of 6632 kg in the city, as well as by the general public in relatively small amounts. In 2011, no malathion was applied by the city. Malathion was detected in 41 % of the samples in 2010 with deposition rates ranging from 0.5 to 107.7 μg/m²/week. Only 9 % of the samples contained malathion in 2011 with deposition rates always being <0.4 μg/m²/week. Between 6 and 25 % of the samples in 2010 exceeded the toxicological threshold levels of malathion to a range of freshwater amphipods, water fleas, and stoneflies, including Daphnia magna which is a bioindicator of good environmental health. The weekly maximum malathion concentration detected in this study (5.2 μg/L for a week in June 2010) was at least 26 times greater than the maximum concentration of malathion reported in other atmospheric deposition studies. For the two insect management areas (7.4 and 37.6 km²) where the bulk deposition samplers had been placed, calculations suggested that between 1.2 and 5.1 % of the malathion applied by the city became bulk deposition. Percutaneous absorption by humans of malathion in rainfall is unknown.
Afficher plus [+] Moins [-]Increased Water Pollution After Closure of Australia’s Longest Operating Underground Coal Mine: a 13-Month Study of Mine Drainage, Water Chemistry and River Ecology
2018
Wright, IanA. | Paciuszkiewicz, Kasjan | Belmer, Nakia
This study investigated the water pollution impact of mine drainage from an underground colliery that had stopped mining 3 years earlier. After more than a century of operation, the mining stopped, pumping ceased and groundwater accumulated, causing the flooding of the deepest sections (c. 15%) of the mine workings. The mine then began free-draining to the adjacent Wingecarribee River. The closure and flooding triggered acid mine drainage that has resulted in mildly acidic pH and higher concentrations of several metals. Of greatest environmental concern were ecologically hazardous concentrations of three metals: nickel (418 μg/L), zinc (1161 μg/L) and manganese (11,909 μg/L) in the mine drainage. Such concentrations are some of the highest concentrations reported for these metals in drainage from an Australian coal mine and are 2.5 to seven times higher than when the mine was operating. The concentration of nickel and manganese were stable, but zinc gradually declined throughout the 13-month study. The inflow of the drainage increased the concentration of the three metals in the river, causing exceedance of water quality guidelines for protection of aquatic species. The ecological impact of the mine drainage was substantial, causing a 63% reduction in family richness and a 90% reduction in proportion of invertebrates from the known pollution-sensitive orders (Ephemeroptera, Plecoptera and Trichoptera). Literature suggests the pollution could continue for decades. Of additional concern is that the mine drainage is currently untreated and pollutes a river in the water catchment of Australia’s largest domestic water supply reservoir.
Afficher plus [+] Moins [-]Testing the Performance of Macroinvertebrate Metrics as Indicators of Changes in Biodiversity After Pasture Conversion in Patagonian Mountain Streams
2015
Brand, Cecilia | Miserendino, María Laura
Conversion of native forest to pastures is a common practice worldwide; it has complex effects on river biota that are related to activity type and intensity. This work was conducted in order to evaluate the effects of cattle grazing on environmental features and to select the most appropriate measures based on the macroinvertebrate community as indicators of ecological changes. Physicochemical features, riparian ecosystem quality, habitat condition, and benthic macroinvertebrates were investigated in streams draining pastures and were compared to reference streams located in nonimpacted native forested catchments. Strong evidence of sediment deposition was observed at pasture streams, which had higher percentage of sand in the streambed but also increased levels of suspended solids. Pasture sites had significantly higher water temperature and conductivity as well as lower dissolved oxygen concentrations than did forested sites. Both riparian quality and in-stream habitat condition were degraded at pasture sites. Among metrics, total richness, Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness, Plecoptera richness, Shannon diversity, percentage of dominant taxon, percentage of Chironomidae species, shredder richness, and percentage of predator resulted to be the most consistent measures by displaying stronger responses to impairment. Our results suggest that forest conversion to pasture for livestock practices is diminishing macroinvertebrate biodiversity and potentially changing functioning and dynamics of Patagonian mountain streams as well. Damage prevention on riverine landscapes by restoring riparian ecosystems, replanting missing vegetation in buffer areas, and limiting livestock access to the riverbanks could contribute to enhance the ecological integrity at converted areas. A more extended and comprehensive use of macroinvertebrate metrics could contribute to better understand and evaluate impact effects of these extended land use activities and to promote conservation strategies.
Afficher plus [+] Moins [-]Health assessment using aqua-quality indicators of alpine streams (Khunjerab National Park), Gilgit, Pakistan
2017
Ali, Salar | Gao, Junfeng | Begum, Farida | Rasool, Atta | Ismail, Muhammad | Cai, Yongjiu | Tareen, Shaukat | Ali, Shujaat
This preliminary research was conducted to evaluate the alpine stream health by using water quality as an indicator in Khunjerab National park of the Karakoram ranges located in Pak-China boarder Pakistan having altitude of 3660 m. This study investigated the stream health in the context of the presence or absence of sensitive species, their diversity, and their taxa richness. The water and macroinvertebrate samples were collected from 17 different locations from upstream and downstream of the river by using random sampling method. Macroinvertebrate samples were obtained using kick net (500-μm mesh size) and hand-picking method (NYSDEC). A total of 710 counts including 41 families of macroinvertebrates were recorded comprising of 7 orders including: Ephemeroptera (46%) being the most dominant group, Plecoptera (33%), Trichoptera (5%), Chironomidae (Diptera) (14%), Heteroptera (1%), and Coleoptera (1%). Ephemeroptera, Trichoptera, and Plecoptera (EPT) were found in abundance at the main source, Qarchanai, Dhee, and Tourqeen Nullah, as compared to the other locations of the stream. The most dominant macroinvertebrate was Ephemeroptera whose relative abundance is Pi = 0.49 by using the Shannon index. However, different statistical tools, including principal component analysis (PCA), cluster analysis (CA), ANOVA, and linear regression model, show a strong correlation between water quality and macroinvertebrates. The overall results of the biological indicators showed better ecological health at downstream compared to upstream. This study will provide basic information and understanding about the macroinvertebrates for future researchers, and the data will be helpful for upcoming research programs on alpine streams for the discovery and occurrences of macroinvertebrates and associated fauna.
Afficher plus [+] Moins [-]Assessment of the effects of nickel on benthic macroinvertebrates in the field
2014
Peters, Adam | Simpson, Peter | Merrington, Graham | Schlekat, Chris | Rogevich-Garman, Emily
A field-based evaluation of the biological effects of potential nickel (Ni) exposures was conducted using monitoring data for benthic macroinvertebrates and water chemistry parameters for streams in England and Wales. Observed benthic community metrics were compared to expected community metrics under reference conditions using RIVPACS III+ software. In order to evaluate relationships between Ni concentrations and benthic community metrics, bioavailable Ni concentrations were also calculated for each site. A limiting effect from Ni on the 90th percentile of the maximum achievable ecological quality was derived at “bioavailable Ni” exposures of 10.3 μg l⁻¹. As snails have been identified as particularly sensitive to nickel exposure, snail abundance in the field in response to nickel exposure, relative to reference conditions, was also analysed. A “low effects” threshold for snail abundance based on an average of spring and autumn data was derived as 3.9 μg l⁻¹bioavailable Ni. There was no apparent effect of Ni exposure on the abundance of Ephemeroptera (mayflies), Plecoptera (stoneflies) or Tricoptera (caddisflies) when expressed relative to a reference condition within the range of “bioavailable Ni” exposures observed within the dataset. Nickel exposure concentrations co-vary with the concentrations of other stressors in the dataset, and high concentrations of Ni are also associated with elevated concentrations of other contaminants.
Afficher plus [+] Moins [-]