Affiner votre recherche
Résultats 1-10 de 112
International quantification of microplastics in indoor dust: prevalence, exposure and risk assessment
2022
Soltani, Neda Sharifi | Taylor, Mark Patrick | Wilson, Scott Paton
This international scale study measured the prevalence of indoor microplastics (MPs) in deposited dust in 108 homes from 29 countries over a 1-month period. Dust borne MPs shape, colour, and length were determined using microscopy and the composition measured using μFTIR. Human health exposure and risk was assessed along with residential factors associated with MPs via a participant questionnaire. Samples were categorised according to each country's gross national income (GNI). Synthetic polymers dominated in low income (LI) (39%) and high income (HI) (46%) while natural fibres were the most prevalent in medium income (MI) (43%) countries. Composition and statistical analysis showed that the main sources of MPs and dust were predominantly from indoor sources. Across all GNI countries, greater vacuuming frequency was associated with lower MPs loading. High income country samples returned higher proportions of polyamides and polyester fibres, whereas in LI countries polyurethane was the most prominent MPs fibre. Exposure modelling showed infants (0–2 years) were exposed to the highest MPs dose through inhalation (4.5 × 10⁻⁵ ± 3 × 10⁻⁵) and ingestion (3.24 × 10⁻² ± 3.14 × 10⁻²) mg/kg-Bw/day. Health risk analysis of constituent monomers of polymers indicates cancer incidence was estimated at 4.1–8.7 per million persons across age groups. This study's analysis showed socio-economic factors and age were dominant variables in determining dose and associated health outcomes of MPs in household dust.
Afficher plus [+] Moins [-]Impacts of microplastics on scleractinian corals nearshore Liuqiu Island southwestern Taiwan
2022
Lim, Yee Cheng | Chen, Chiu-Wen | Cheng, Yu-Rong | Chen, Chih-Feng | Dong, Cheng-Di
Seawater, sediments, and three genera of wild scleractinian corals were collected from four coral reef areas nearshore Liuqiu Island, southwestern Taiwan. Abundance, characteristics (sizes, colors, shapes, and polymer types), and enrichment of microplastics (MPs) in the corals, and their impacts on coral cover were determined. The average MPs abundances were 0.95, 0.77, and 0.36 item/g for Galaxea sp, Acropora spp, and Pocillopora sp, respectively. The MPs abundance was relatively higher on the coral surfaces than inside the skeletons, dominated by blue rayon-fibers, correspondingly observed in seawater and sediments. Large-size colorless MPs tended to be mis-ingested by Galaxea sp. (71%) compared with Pocillopora sp. (43%) and Acropora spp. (31%). The low hard coral cover (12.5%) observed at Yufu (L1) on the northeastern coastal zone nearby tourism center of Liuqiu Island where correspondingly associated with high MPs abundance in seawater (10 item/L), sediments (260 item/kg), and corals (0.60 item/g). Tourism induced sewage discharges and sailing activities significantly contributed to the MPs pollution, probably contributing to the loss of coral cover. High MPs enrichment in corals (EFMP = 25–283) shows that the marine MPs pollution can critically threaten coral reef ecosystems. Fibrous MPs present inside the coral skeleton serve as potential indicator of MPs’ impact on corals—with the dominance of textile-related rayon and polyester/PET microfibers in the coral reef zones. This study provided valuable information for coral conservation and coastal management.
Afficher plus [+] Moins [-]Thin synthetic fibers sinking in still and convectively mixing water: laboratory experiments and projection to oceanic environment
2021
Khatmullina, Liliya | Chubarenko, Irina
Synthetic fibers with diameters of several tens of micrometers are the most abundant type of microplastics in the marine environment, yet the most unknown regarding dynamics in the water column. Experiments proposed here are a proof-of-concept of qualitative and quantitative characteristics of fibers’ motion in still water and in the presence of thermal convection. For 12 sets of fine fibers (nylon (1.12 g/cm³) and polyester (1.35 g/cm³), 1.9–14.8 mm long, diameters 13 and 20 μm), 84 measurements of sinking velocity in still water were acquired. In still conditions, fibers settled smoothly and slowly, preserving their initial (accidental) orientation. Sinking rates of fibers with lengths <5 mm varied between 0.5 and 3.7 mm/s (the bulk mean of 1.6 mm/s). Fibers with similar properties showed 4-fold different sinking velocity, which is supposed to be the effect of their different orientation while settling: vertically oriented fibers (19% in the experiments) settled faster than those with inclined orientation (48%), and horizontally oriented fibers (33%) settled with the smallest velocities.Convective mixing of water, heated from below, principally changed the manner of sinking of fibers: their motions became unsteady and 3-dimensional. In 78 measurements for 4-mm long nylon fibers (using the “light knife” technique), only about 56% of fibers showed downward velocity component (mean 1.33 ± 0.78 mm/s), which was twice as small as in still water, however the ratio of max/min values increased up to 14. Fibers could move in different directions and follow circular motions of a convective cell. Our findings suggest two possible mechanisms retaining fibers in the water column: entrainment of some particles in horizontal and vertical motions and slowed sinking due to unsteady flow around the fiber. The retention of fibers leads to decrease in integral downward particle flux (up to 4 times in our experiments).
Afficher plus [+] Moins [-]Quantification and exposure assessment of microplastics in Australian indoor house dust
2021
Soltani, Neda Sharifi | Taylor, Mark Patrick | Wilson, Scott Paton
Limited attention has been given to the presence of MPs in the atmospheric environment, particularly in indoor environments where people spend about 90% of their time. This study quantitatively assesses the prevalence, source and type of MPs in Australian homes with the goal of evaluating human health exposure potential. Thirty-two airborne indoor deposited dust samples were collected in glass Petri dishes from Sydney (Australia) homes, over a one-month period in 2019. Participants completed a questionnaire on their household characteristics. Samples were analysed using a stereomicroscope, a fluorescent microscope and micro-Fourier transform infrared (FTIR) spectroscopy for their colour, size, shape and composition. Inhalation and ingestion rates were modelled using US EPA exposure factors. Microplastic fibre deposition rates ranged from 22 to 6169 fibres/m²/day. Deposited dust comprised 99% fibres. The highest proportion of fibres (19%) were 200–400 μm in length. The majority were natural (42%); 18% were transformed natural-based fibres; and 39% were petrochemical based. A significant difference was observed between the deposition rate and the main floor covering (p-value <0.05). Polyethylene, polyester, polyamide, polyacrylic, and polystyrene fibres were found in higher abundance in homes with carpet as the main floor covering. Where carpet was absent, polyvinyl fibres were the most dominant petrochemical fibre type, indicating the role of flooring materials (e.g. wood varnishes) in determining MP composition. Vacuum cleaner use was significantly related to MP deposition rates (p-value <0.05). MP ingestion rates peaked at 6.1 mg/kg-Bw/year for ages 1–6, falling to a minimum of 0.5 mg/kg-Bw/year in >20 years age group. Mean inhaled MP weight and count was determined to be 0.2±0.07 mg/kg-Bw/year and 12891±4472 fibres/year. Greatest inhalation intake rates were for the <0.5-yr age group, at 0.31 mg/kg-Bw/year. The study data reveal that MPs are prevalent in Australian homes and that the greatest risk of exposure resides with young children. Notwithstanding the limited number of global studies and the different methods used to measure MPs, this study indicates Australian deposition and inhalation rates are at the lower end of the exposure spectrum.
Afficher plus [+] Moins [-]Low microplastic abundance in Siganus spp. from the Tañon Strait, Central Philippines
2021
Paler, Maria Kristina O. | Leistenschneider, Clara | Migo, Veronica | Burkhardt-Holm, Patricia
Microplastic (MP) occurrence is a major global issue, though data on MP occurrence in the Philippines is limited and the potential effects of MPs on biota are still poorly studied. MP occurrence in fishes remains a concern, especially in economically and ecologically important species such as Siganus spp. This study determined MP occurrence in the gastrointestinal tract of wild rabbit fishes from Tañon Strait, the largest marine protected area in the Philippines. Siganus canaliculatus (n = 65), S. spinus (n = 17), S. guttatus (n = 5), S. virgatus (n = 8) and S. punctatus (n = 1) were sampled from the north and south of the strait. All MPs isolated from the gut of the rabbit fishes except for fibers were chemically analyzed by ATR-FTIR spectroscopy; an established library was used to determine the polymeric identities. Five particles were confirmed as polyester, polyamide, polyethylene or phenoxy resin MPs. The average MP abundance was 0.05 items/individual (S. virgatus > S. guttatus > S. canaliculatus > S. spinus = S. punctatus), which is comparable to studies conducted in other locations using similar methods. Fibers were counted (1556 in total), but not chemically analyzed. The low MP abundance in the samples may be attributed to the capability of rabbit fishes to discriminate food preferences. However, the risks associated with MPs should not be underestimated, especially as all parts of the fishes—including the gut—are utilized as human foods in the Philippines and many other Asian countries.
Afficher plus [+] Moins [-]Nationwide monitoring of microplastics in bivalves from the coastal environment of Korea
2021
Cho, Youna | Shim, Won Joon | Jang, Mi | Han, Gi Myung | Hong, Sang Hee
Bivalves are useful bioindicators of microplastic contamination in the marine environment for several reasons, such as extensive filter feeding activity, broad geographical distribution, and limited movement capability. This study conducted a nationwide monitoring of microplastic pollution along the Korean coasts using filter-feeding bivalves (including oyster, mussel, and Manila clam) as bioindicators to identify the national contamination level and characteristics of microplastics. Seawater sample was collected from the same sampling stations of oyster and mussel for comparison. Microplastics were widely distributed in both coastal bivalves and waters with mean concentrations of 0.33 ± 0.23 n/g (1.21 ± 0.68 n/individual) in oyster/mussel, 0.43 ± 0.32 n/g (2.19 ± 1.20 n/individual) in Manila clam, and 1400 ± 560 n/m³ in seawater. Despite the lack of significant relationship in the abundance of microplastics, their dominant features such as size, shape, color and polymer type were similar between bivalves and seawater. Fragments (69% for oyster/mussel, 72% for Manila clam, and 77% for seawater), particles smaller than 300 μm (96% for oyster/mussel, 83% for Manila clam, and 84% for seawater) and colorless (79% for oyster/mussel, 85% for Manila clam, 75% for seawater) were the dominant shape, size and color, respectively. The major polymer types were polypropylene, polyethylene, and polyester. The microplastic level in bivalves was relatively high in urbanized areas with a wide diversity of polymer types compared with those in non-urbanized areas, and the proportion of polystyrene in the Korean samples was abundant compared with other regions due to wide use of polystyrene products in Korea. Our result suggests that microplastic contamination is widespread in the Korean coastal environment, and bivalves can reflect the microplastic pollution characteristics of the surrounding waters where they live.
Afficher plus [+] Moins [-]Microplastic concentrations in cultured oysters in two seasons from two bays of Baja California, Mexico
2021
Lozano-Hernández, Eduardo Antonio | Ramírez-Álvarez, Nancy | Rios Mendoza, Lorena Margarita | Macías-Zamora, José Vinicio | Sánchez-Osorio, José Luis | Hernández-Guzmán, Félix Augusto
As filter feeders, bivalve mollusks have a high potential risk of contamination by microplastics (MPs), which can be considered a transfer vector for humans through their consumption. Spatial-temporal differences in the MP concentration were evaluated in the cultured oyster Magallana gigas in Todos Santos Bay (TSB) and San Quintin Bay (SQB) during winter and summer (2019). MPs were found in all samples in both seasons, where microfibers were the most abundant particles observed. Only in winter, statistically significant differences were observed in the average concentration of ingested MPs between oysters from TSB and SQB. In each bay, the highest concentrations were observed during winter. Seasonal differences between MP concentrations were only found in TSB. During summer, the content of MPs was compared between the digestive system and the rest of the soft tissue in organisms from each site, and statistically significant differences were not observed, except by one site in SQB. Polymers were identified via μ-FTIR-ATR spectrometry. Polyester, polyacrylonitrile, and rayon were the most common plastics detected. However, due to the low concentration of MPs found in oysters, its consumption does not represent a risk to human health. Moreover, MP concentrations in organisms appear to respond to variables, such as temporality and the water circulation dynamics within the bays.
Afficher plus [+] Moins [-]The distribution and ecological effects of microplastics in an estuarine ecosystem
2021
Hope, Julie A. | Coco, Giovanni | Ladewig, Samantha M. | Thrush, Simon F.
Coastal sediments, where microplastics (MPs) accumulate, support benthic microalgae (BMA) that contribute to ecosystem functions such as primary production, nutrient recycling and sediment biostabilization. The potential interactions between MPs, BMA and associated properties and functions remain poorly understood. To examine these interactions, a survey of 22 intertidal sites was conducted. MP abundance, size and a suite of MP diversity indices (based on color and shape) were determined from surface sediments alongside biochemical and physical properties. MPs were detected at all sites and dominated by polypropylene (34%), polyester (18%) and polyethylene (11%). Fragment and fiber dominance (16–92% and 6–81% respectively) and color-shape category diversity varied significantly by site. Distance-based linear models demonstrated that estuary-wide, mean grain size and mud were the best predictors of MP abundance-diversity matrices, but variance explained was low (9%). Relationships were improved when the data was split into sandy and muddy habitats. In sandy habitats (<8% mud), physical properties of the bed (mean grain size, mud content and distance from the estuary mouth) were still selected as predictors of MP abundance-diversity (14% variance explained); but a number of bivariate relationships were detected with biochemical properties such as BMA associated pigments and organic matter. In muddy habitats (>8% mud), porewater ammonium was lower when fiber abundance and overall MP diversity were higher. The inclusion of porewater ammonium, organic matter content and pheophytins alongside physical properties explained a greater percentage of the variance in MP abundance-diversity for muddy habitats (21%). The results highlight the importance of examining plastic shapes and MP categories in addition to abundance and emphasize that functionally different habitats should be examined separately to increase our understanding of MP-biota-function relationships.
Afficher plus [+] Moins [-]Variations in aggregate-associated organic carbon and polyester microfibers resulting from polyester microfibers addition in a clayey soil
2020
Zhang, G.S. | Zhang, F.X.
Organic carbon is an essential element for sustainable soil management. While the effects of microplastics on soil physical and biological properties are presenting, it remains unclear whether the organic carbon dynamics of soil are altered by increased microplastic accumulation. The objectives of this study were to evaluate the influences of different polyester microfiber (PMF 0, 0.1% and 0.3% of soil dry weight) and organic material (OM 0, 1%, 2% and 3% of soil dry weight) addition levels on soil organic carbon and to determine the PMF distribution in aggregates from a pot experiment. After 75 days of incubation under 6 wet-dry cycles, the concentrations of soil total organic carbon did not differ significantly between the PMF (9.7 ± 6.6 g kg⁻¹) and control (9.7 ± 6.9 g kg⁻¹) treatments. However, PMF addition significantly reduced the organic carbon concentration in the large (>2 mm) macro-aggregates compared to the control treatment (10.6 ± 4.8 g kg⁻¹ vs. 11.7 ± 4.4 g kg⁻¹), but the results were opposite in the small (2–0.25 mm)macro-aggregates (10.2 ± 4.9 g kg⁻¹ vs. 8.4 ± 3.8 g kg⁻¹). In this study, less than 30% of added PMFs were incorporated into soil aggregates. In addition, the abundance and average length of aggregate-associated PMF in the large (2210 ± 180 particles per g aggregate and 2.08 ± 0.17 mm) and small (1820 ± 150 particles per g aggregate and 1.68 ± 0.11 mm) macro-aggregates were significantly greater than those in the micro-aggregates (1010 ± 70 particles per g aggregate and 0.72 ± 0.05 mm). Our results demonstrate that the distribution of organic carbon in soil macro-aggregates is affected by PMFs addition. Thus, we propose that the behavior of microplastics inside soil aggregates should be further explored to clarify their effects on the physical protection of soil organic carbon.
Afficher plus [+] Moins [-]The effects of wet wipe pollution on the Asian clam, Corbicula fluminea (Mollusca: Bivalvia) in the River Thames, London
2020
McCoy, K.A. | Hodgson, D.J. | Clark, P.F. | Morritt, D.
The aim of the present study was to evaluate “flushable” and “non-flushable” wet wipes as a source of plastic pollution in the River Thames at Hammersmith, London and the impacts they have on the invasive Asian clam, Corbicula fluminea, in this watercourse. Surveys were conducted to assess whether the density of wet wipes along the foreshore upstream of Hammersmith Bridge affected the distribution of C. fluminea. High densities of wet wipes were associated with low numbers of clams and vice versa. The maximum wet wipe density recorded was 143 wipes m⁻² and maximum clam density 151 individuals m⁻². Clams adjacent to the wet wipe reefs were found to contain synthetic polymers including polypropylene (57%), polyethylene (9%), polyallomer (8%), nylon (8%) and polyester (3%). Some of these polymers may have originated from the wet wipe reefs.
Afficher plus [+] Moins [-]