Affiner votre recherche
Résultats 1-10 de 367
Microplastics Abundance, Characteristics, and Risk in Badagry Lagoon in Lagos State, Nigeria
2022
Yahaya, Tajudeen | Abdulazeez, Abdulmalik | Oladele, Esther | Williams, Evelyn | Obadiah, Caleb | Umar, Ja’afar | Salisu, Naziru
Microplastics are widely used to manufacture diverse products such as textiles, skin care products, and household products such as detergents and soaps. However, microplastic pollution and its potential health risks are raising concerns worldwide. This study characterized and determined the safety of microplastics in water and sediments obtained from three locations, namely Ibeshe, Amuwo Odofin, and Ojo along Badagry lagoon, Lagos, Nigeria. The samples of the lagoon's surface water and sediments were treated and analyzed for the abundance of microplastics, as well as their shapes, sizes, and types of polymers. The risk index of the polymers in the microplastics was also estimated. Microplastics were found to be more abundant (p ≤ 0.05) in the sediments (283–315 particles/kg) than in the surface water (108–199 particles/L). In both the water and sediments at all the locations, the dominant shapes were fibers (52%–90%), followed by fragments (3%–32%) and films (1%–25%). In order of significance, the microplastic size range of 0-100µm and 100-500µm dominated the surface water, while the size range of 1000-5000µm and 500-1000µm dominated the sediments at all the locations. The dominant polymers in both the water and sediments at all the locations were polyethylene, polypropylene, and polyamide, while the least was polystyrene. In both the water and sediments at all the locations, the dominant risk score among the polymers is III (moderate risk). The results obtained suggest that microplastic pollution poses environmental and health risks to the lagoon, aquatic organisms, and humans. As such, the lagoon required microplastic remediation and control.
Afficher plus [+] Moins [-]Photolytic degradation of novel polymeric and monomeric brominated flame retardants: Investigation of endocrine disruption, physiological and ecotoxicological effects
2022
Esther, Smollich | Malte, Büter | Gerhard, Schertzinger | Elke, Dopp | Bernd, Sures
Ecotoxicological effects of photolytic degradation mixtures of the two brominated flame retardants PolymericFR and Tetrabromobisphenol A-bis (2,3-dibrom-2-methyl-propyl) Ether (TBBPA-BDBMPE) have been studied in vitro and in vivo. Both substances were experimentally degraded separately by exposure to artificial UV-light and the resulting degradation mixtures from different time points during the UV-exposure were applied in ecotoxicological tests. The in vitro investigation showed no effects of the degraded flame retardants on the estrogenic and androgenic receptors via the CALUX (chemically activated luciferase gene expression) assay. Short-term exposures (up to 96 h) of Lumbriculus variegatus lead to temporary physiological reactions of the annelid. The exposure to degraded PolymericFR lead to an increased activity of Catalase, while the degradation mixture of TBBPA-BDBMPE caused increases of Glutathione-S-transferase and Acetylcholine esterase activities. Following a chronic exposure (28 d) of L. variegatus, no effects on the growth, reproduction, fragmentation and energy storage of the annelid were detected. The results indicate that the experimental degradation of the two flame retardants causes changes in their ecotoxicological potential. This might lead to acute physiological effects on aquatic annelids, which, however, do not affect the animals chronically according to our results.
Afficher plus [+] Moins [-]Functional group diversity for the adsorption of lead(Pb) to bacterial cells and extracellular polymeric substances
2022
Qu, Chenchen | Yang, Shanshan | Mortimer, Monika | Zhang, Ming | Chen, Jinzhao | Wu, Yichao | Chen, Wenli | Cai, Peng | Huang, Qiaoyun
Bacteria and their secreted extracellular polymeric substances (EPS) are widely distributed in ecosystems and have high capacity for heavy metal immobilization. The knowledge about the molecular-level interactions with heavy metal ions is essential for predicting the behavior of heavy metals in natural and engineering systems. This comprehensive study using potentiometric titration, Fourier-transform infrared (FTIR) spectroscopy, isothermal titration calorimetry (ITC) and X-ray absorption fine structure (XAFS) was able to reveal the functional diversity and adsorption mechanisms for Pb onto bacteira and the EPS in greater detail than ever before. We identified mono-carboxylic, multi-carboxylic, phosphodiester, phosphonic and sulfhydryl sites and found the partitioning of Pb to these functional groups varied between gram-negative and gram-positive bacterial strains, the soluble and cell-bound EPS and Pb concentrations. The sulfhydryl and phosphodiester groups preferentially complexed with Pb in P. putida cells, while multifunctional carboxylic groups promoted Pb adsorption in B. subtilis cells and the protein fractions in EPS. Though the functional site diversity, the adsorption of Pb to organic ligands occurred spontaneously through a universal entropy increase and inner-sphere complexation mechanism. The functional group scale knowledge have implications for the modeling of heavy metal behavior in the environment and application of these biological resources.
Afficher plus [+] Moins [-]Poly-NIPAM/Fe3O4/multiwalled carbon nanotube nanocomposites for kerosene removal from water
2022
Abdullah, Thamer Adnan | Juzsakova, Tatjána | Le, Phuoc-Cuong | Kułacz, Karol | Salman, Ali D. | Rasheed, Rashed T. | Mallah, Muhammad Ali | Varga, Béla | Mansoor, Hadeel | Mako, Eva | Zsirka, Balázs | Nadda, Ashok Kumar | Nguyen, X Cuong | Nguyen, D Duc
Multiwalled carbon nanotubes (MWCNTs) were oxidized using a mixture of H₂SO₄ and HNO₃, and the oxidized MWCNTS were decorated with magnetite (Fe₃O₄). Finally, poly-N-isopropyl acrylamide-co-butyl acrylate (P-NIPAM) was added to obtain P-NIPAM/Fe/MWCNT nanocomposites. The nanosorbents were characterized by various techniques, including X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and Brunauer–Emmett–Teller analysis. The P-NIPAM/Fe/MWCNT nanocomposites exhibited increased surface hydrophobicity. Owing to their higher adsorption capacity, their kerosene removal efficiency was 95%; by contrast, the as-prepared, oxidized, and magnetite-decorated MWCNTs had removal efficiencies of 45%, 55%, and 68%, respectively. The P-NIPAM/Fe/MWCNT nanocomposites exhibited a sorbent capacity of 8.1 g/g for kerosene removal from water. The highest kerosene removal efficiency from water was obtained at a process time of 45 min, sorbent dose of 0.005 g, solution temperature of 40 °C, and pH 3.5. The P-NIPAM/Fe/MWCNTs showed excellent stability after four cycles of kerosene removal from water followed by regeneration. The reason may be the increase in the positive charge of the polymer at pH 3.5 and the increased adsorption affinity of the adsorbent toward the kerosene contaminant. The pseudo second-order model was found to be the most suitable model for studying the kinetics of the adsorption reaction.
Afficher plus [+] Moins [-]Enhanced Cd2+ adsorption and toxicity for microbial biofilms in the presence of TiO2 nanoparticles
2022
Wang, Wenwen | Zhu, Shijun | Li, Nihong | Xie, Shanshan | Wen, Chen | Luo, Xia
Titanium dioxide nanoparticles (TiO₂ NPs) easily combine with other pollutants such as heavy metals because of their excellent physiochemical properties. However, how such an interaction may affect the binding behavior of metals onto biofilms remains largely unclear. This study, examined the effects of TiO₂ NPs on Cd²⁺ accumulation and toxicity for natural periphytic biofilms were examined. The adsorption kinetics showed that adding 0.1 and 1 mg/L TiO₂–NPs increased the Cd²⁺ adsorption of biofilms at equilibrium by 23.5% and 35.8%, respectively. However, adding 10 mg/L TiO₂ NPs increased the Cd²⁺ adsorption of biofilms at equilibrium by only 1.9%. The adsorption isotherms indicate that the presence of TiO₂ NPs considerably increased the Cd²⁺ adsorption capacity of the biofilms; however, this effect became less prominent at high TiO₂ NP concentrations. The optimum pH for Cd²⁺ adsorption increased with increasing Cd²⁺ and TiO₂ NP contents. At low concentrations, the coexistence of Cd²⁺ and TiO₂ NPs may facilitate their respective accumulation by stimulating the secretion of extracellular polymeric substances and enhancing the microbial activity of the biofilm. The presence of TiO₂ NPs increases the surface binding energy between Cd²⁺ and functional groups such as carboxyl groups, enhancing the Cd²⁺ accumulation on the biofilm.
Afficher plus [+] Moins [-]Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr(VI) and Pb(II)
2021
Zhao, Chenhao | Hu, Linlin | Zhang, Changai | Wang, Shengsen | Wang, Xiaozhi | Huo, Zhongyang
Herein, a pH-independent interpenetrating polymeric networks (Fe-SA-C) were fabricated from graphitic biochar (BC) and iron-alginate hydrogel (Fe-SA) for removal of Cr(VI) and Pb(II) in aqueous solution. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM) results demonstrated that graphitic BC interpenetration increased surface porosity and distorted surfaces of Fe-SA, which boosted availability of hydroxyl (-OH) group. Fe³⁺ as a cross-linking agent of the alginate endowed Fe-SA-C with positive surfaces (positive zeta potential) and excellent pH buffering capacity, while excessive Fe³⁺ was soldered on Fe-SA-C matrix as FeO(OH) and Fe₂O₃. Cr(VI) removal at pH of 3 by Fe-SA-C (20.3 mg g⁻¹) were 30.3% and 410.6% greater than that by Fe-SA and BC, respectively. Fe-SA-C exhibited minor pH dependence over pH range of 2–7 towards Cr(VI) retention. Greater zeta potential of Fe-SA-C over Fe-SA conferred a better electrostatic attraction with Cr(VI). FTIR and XPS of spent sorbents confirmed the reduction accounted for 98.5% for Cr(VI) removal mainly due to participation of –OH. Cr(VI) reduction was further favored by conductive carbon matrix in Fe-SA-C, as evidenced by more negative Tafel corrosion potential. Reductively formed Cr(III) was subsequently complexed with carboxylic groups originating from oxidation of –OH. Thus, Cr(VI) removal invoked electrostatic attraction, reduction, and surface complexation mechanisms. Pb(II) removal with excellent pH independence was mainly ascribed to surface complexation and possible precipitation. Thus, the functionalized, conductive, and positively-charged Fe-SA-C extended its applicability for Cr(VI) and Pb(II) removal from aqueous solutions in a wide pH range. This research could expand the application of hydrogel materials for removal of both cationic and anionic heavy metals in solutions over an extended pH range.
Afficher plus [+] Moins [-]Effect of C/N substrates for enhanced extracellular polymeric substances (EPS) production and Poly Cyclic Aromatic Hydrocarbons (PAHs) degradation
2021
Premnath, N. | Mohanrasu, K. | Guru Raj Rao, R. | Dinesh, G.H. | Siva Prakash, G. | Pugazhendhi, Arivalagan | Jeyakanthan, J. | Govarthanan, Muthusamy | Kumar, Ponnuchamy | Arun, A.
Extracellular Polymeric Substances (EPS) influenced Poly Cyclic Aromatic Hydrocarbons (PAHs) degrading Klebsiella pneumoniae was isolated from the marine environment. To increase the EPS production by Klebsiella pneumoniae, several physicochemical parameters were tweaked such as different carbon sources (arabinose, glucose, glycerol, lactose, lactic acid, mannitol, sodium acetate, starch, and sucrose at 20 g/L), nitrogen sources (ammonium chloride, ammonium sulphate, glycine, potassium nitrate, protease peptone and urea at 2 g/L), different pH, carbon/nitrogen ratio, temperature, and salt concentration were examined. Maximum EPS growth and biodegradation of Anthracene (74.31%), Acenaphthene (67.28%), Fluorene (62.48%), Naphthalene (57.84%), and mixed PAHs (55.85%) were obtained using optimized conditions such as glucose (10 g/L) as carbon source, potassium nitrate (2 g/L) as the nitrogen source at pH 8, growth temperature of 37 °C, 3% NaCl concentration and 72 h incubation period. The Klebsiella pneumoniae biofilm architecture was studied by confocal laser scanning microscopy (CLSM) and scanning electron microscope (SEM). The present study demonstrates the EPS influenced PAHs degradation of Klebsiella pneumoniae.
Afficher plus [+] Moins [-]Non-noble metal (Ni, Cu)-carbon composite derived from porous organic polymers for high-performance seawater electrolysis
2021
Gopi, Sivalingam | Vadivel, Selvamani | Pinto, Leandro M.C. | Syed, Asad | Kathiresan, Murugavel | Yun, Kyusik
The hydrothermal preparation of o-dianisidine and triazine interlinked porous organic polymer and its successive derivatisation via metal infusion (Ni, Cu) under hydrothermal and calcination conditions (700 °C) to yield pristine (ANIPOP-700) and Ni/Cu decorated porous carbon are described here (Ni-ANIPOP-700 and Cu-ANIPOP-700). To confirm their chemical and morphological properties, the as-prepared materials were methodically analyzed using solid state ¹³C and ¹⁵N NMR, X-ray diffraction, Raman spectroscopy, field emission scanning and high resolution transmission electron microscopic techniques, and x-ray photoelectron spectroscopy. Furthermore, the electrocatalytic activities of these electrocatalysts were thoroughly investigated under standard oxygen evolution (OER) and hydrogen evolution reaction (HER) conditions. The results show that all of the materials demonstrated significant activity in water splitting as well as displayed excellent stability (22 h) in both acidic (HER) and basic conditions (OER). Among the electrocatalysts reported in this study, Ni-ANIPOP-700 exhibited a lower overpotential η₁₀ of 300 mV in basic medium (OER) and 150 mV in acidic medium (HER), as well as a lower Tafel slope of 69 mV/dec (OER) and 181 mV/dec (HER), indicating 30% lower energy requirement for overall water splitting. Gas chromatography was used to examine the electrolyzed products.
Afficher plus [+] Moins [-]Size-dependent effects of ZnO nanoparticles on performance, microbial enzymatic activity and extracellular polymeric substances in sequencing batch reactor
2020
Wang, Sen | Gao, Mengchun | Ma, Bingrui | Xi, Min | Kong, Fanlong
ZnO nanoparticles (NPs) have been detected in various wastewater treatment plants. It is widely assumed that size has a crucial effect on the NPs toxicity. Concerns have been raised over probable size-dependent toxicity of ZnO NPs to activated sludge, which could eventually affect the treatment efficiencies of wastewater treatment facilities. The size-dependent influences of ZnO NPs on performance, microbial activities, and extracellular polymeric substances (EPS) from activated sludge were examined in sequencing batch reactor (SBR) in present study. Three different sizes (15, 50, and 90 nm) and five concentrations (2, 5, 10, 30, and 60 mg L⁻¹) were trialled. The inhibitions on COD and nitrogen removal were determined by the particle size, and smaller ZnO NPs (15 nm) showed higher inhibition effect than those of 50 and 90 nm, whereas the ZnO NPs with size of 50 nm showed maximum inhibition effect on phosphorus removal among three sizes of ZnO NPs. After exposure to different sized ZnO NPs, microbial enzymatic activities and removal rates of activated sludge represented the same trend, consistent with the nitrogen and phosphorus removal efficiency. In addition, apparent size- and concentration-dependent effects on EPS contents and components were also observed. Compared with the absence of ZnO NPs, 60 mg L⁻¹ ZnO NPs with sizes of 15, 50, and 90 nm increased the EPS contents from 92.5, 92.4, and 92.0 mg g⁻¹ VSS to 277.5, 196.8, and 178.2 mg g⁻¹ VSS (p < 0.05), respectively. The protein and polysaccharide contents increased with the decreasing particle sizes and increasing ZnO NPs concentrations, and the content of protein was always higher than that of polysaccharide.
Afficher plus [+] Moins [-]Bioreduction of hexavalent chromium on goethite in the presence of Pseudomonas aeruginosa
2020
Li, Yihao | Wang, Huimin | Wu, Pingxiao | Yu, Langfeng | Rehman, Saeed | Wang, Junfeng | Yang, Shanshan | Zhu, Nengwu
The effective mineral absorption and bioreduction were considered as two preferred processes to alleviate the bioavailability and toxicity of toxic trace metals. In this study, the bioreduction of hexavalent chromium (Cr(VI)) on goethite (FeOOH) in the presence of Pseudomonas aeruginosa (P. aeruginosa) was investigated with different environmental factors, including carbon source concentrations, pH, temperature and initial Cr(VI) concentrations. The characterization of FeOOH–P. aeruginosa indicated that P. aeruginosa was surrounded by FeOOH, which could provide the essential iron for bacterial growth and reduce Cr(VI) to Cr(III). The optimal experimental conditions for Cr(VI) (initial concentration: 35 mg L⁻¹) absorption (∼46%) and bioreduction (∼54%) involved a temperature of 45 °C and pH of 5.5. Meanwhile, extracellular polymeric substances (EPS) secreted by P. aeruginosa and its functional groups played important roles in the reduction of Cr(VI). They could reduce Cr(VI) to Cr(III) and transform to Cr(OH)₃ or Feₓ-Cr₍₁₋ₓ₎(OH)₃ precipitation. These results of this study are of significant importance to better understand the environmental geochemical behavior of Cr(VI) with the interactions between soil minerals and microorganisms.
Afficher plus [+] Moins [-]