Affiner votre recherche
Résultats 1-10 de 227
Assessment of elevated CO2 concentrations and heat stress episodes in soybean cultivars growing in heavy metal polluted soils: Crop nutritional quality and food safety Texte intégral
2022
Blanco, Andrés | Högy, Petra | Zikeli, Sabine | Pignata, María L. | Rodriguez, Judith H.
The present study evaluated the interactive effects of global change and heavy metals on the growth and development of three soybean [Glycine max (L.) Merrill] cultivars and the consequences on yield and food safety. Soybean cultivars (Alim 3.14 from Argentina, and ES Mentor and Sigalia, from Germany) were grown until maturity in heavy metals polluted soils from the Rhine Valley, Germany, at two CO₂ concentrations (400 and 550 ppm) and heat stress (HS) episodes (9 days with 10 °C higher than maximum regular temperature) during the critical growth period in controlled environmental chambers. Different morpho-physiological parameters, heavy metal concentration in aerial organs, seed quality parameters, and toxicological index were recorded. The results showed that no morphological differences were observed related to CO₂. Moreover, Alim 3.14 showed the highest yield under control conditions, but it was more sensitive to climatic conditions than the German cultivars, especially to heat stress which strongly reduces the biomass of the fruits. Heavy metals concentration in soil exceeds the legislation limits for agricultural soils for Cd and Pb, with 1.6 and 487 mg kg⁻¹ respectively. In all cultivars, soybeans accumulated Cd in its aerial organs, and it could be translocated to fruits. Cd concentration in seeds ranged between 0.6 and 2.4 mg kg⁻¹, which exceed legislation limits and with toxicological risk to potential Chinese consumers. Pb levels were lower than Cd in seeds (0.03–0.17 mg kg⁻¹), and the accumulation were concentrated in the vegetative organs, with 93% of the Pb incorporated. Moreover, pods accumulated 11 times more Pb than seeds, which suggests that they act as a barrier to the passage of Pb to their offspring. These results evidence that soybean can easily translocate Cd, but not Pb, to reproductive organs. No regular patterns were observed in relation to climatic influence on heavy metal uptake.
Afficher plus [+] Moins [-]Sublethal effects of metal toxicity and the measure of plant fitness in ecotoxicological experiments Texte intégral
2022
Nowak, Juljan Ignacy | Faure, Nathalie | Glorieux, Cédric | Vile, Denis | Pauwels, Maxime | Frérot, Hélène
Anthropogenic pollution is a major driver of global environmental change. To be properly addressed, the study of the impact of pollutants must consider both lethal effects and sublethal effects on individual fitness. However, measuring fitness remains challenging. In plants, the total number of seeds produced, i.e. the seed set, is traditionally considered, but is not readily accessible. Instead, performance traits related to survival, e.g., vegetative biomass and reproductive success, can be measured, but their correlation with seed set has rarely been investigated. To develop accurate estimates of seed set, relationships among 15 vegetative and reproductive traits were analyzed. For this purpose, Noccaea caerulescens (Brassicaceae), a model plant to study local adaptation to metal-contaminated environments, was used. To investigate putative variation in trait relationships, sampling included several accessions cultivated in contrasting experimental conditions. To test their applicability, selected estimates were used in the first generation of a Laboratory Natural Selection (LNS) experiment exposing experimentally plants to zinc soil pollution. Principal component analyses revealed statistical independence between vegetative and reproductive traits. Traits showing the strongest positive correlation with seed set were the number of non-aborted silicles, and the product of this number and mean silicle length. They thus appeared the most appropriate to document sublethal or fitness effects of environmental contaminants in plant ecotoxicological studies. The relevance of both estimates was confirmed by using them to assess the fitness of parental plants of the first generation of an LNS experiment: the same families consistently displayed the highest or the lowest performance values in two independent experimental metal-exposed populations. Thus, both these fitness estimates could be used to determine the expected number of offspring and the composition of successive generations in further LNS experiments investigating the impact of multi-generational exposure of a plant species to environmental pollution.
Afficher plus [+] Moins [-]Intergenerational effects of environmentally-aged microplastics on the Crassostrea gigas Texte intégral
2022
Bringer, Arno | Cachot, Jérôme | Dubillot, Emmanuel | Prunier, Grégoire | Huet, Valérie | Clérandeau, Christelle | Evin, Louise | Thomas, Hélène
This study focused on the impacts of aged aquaculture microplastics (MPs) on oysters (Crassostrea gigas). Adult oysters were exposed for two months to a cocktail of MPs representative of the contamination of the Pertuis Charentais area (Bay of Biscay, France) and issuing from oyster framing material. The MPs mixture included 28% of polyethylene, 40% of polypropylene and 32% of PVC (polyvinyl chloride). During the exposure, tissues were sampled for various analyzes (MP quantification, toxicity biomarkers). Although no effect on the growth of adult oysters was noted, the mortality rate of bivalves exposed to MPs (0.1 and 10 mg. L⁻¹ MP) increased significantly (respectively 13.3 and 23.3% of mortalities cumulative). On the one hand, the responses of biomarkers revealed impacts on oxidative stress, lipid peroxidation and environmental stress. At 56 days of exposure, significant increases were noted for Glutathione S-Transferase (GST, 10 mg. L⁻¹ MP), Malondialdehyde (MDA, 10 mg. L⁻¹ MP) and Laccase (LAC, 0.1 and 10 mg. L⁻¹ MP). No variations were observed for Superoxyde Dismutase (SOD). Besides, ingestion of MPs in oyster tissues and the presence in biodeposits was highlighted. In addition, in vitro fertilisations were performed to characterize MPs effects on the offspring. Swimming behavior, development and growth of D-larvae were analysed at 24-, 48- and 72-h after fertilisation. D-larvae, from exposed parents, demonstrated reduced locomotor activity. Developmental abnormalities and arrest as well as growth retardation were also noted. This study highlighted direct and intergenerational effects of MPs from aged plastic materials on Pacific oysters.
Afficher plus [+] Moins [-]Size-specific sensitivity of cladocerans to freshwater salinization: Evidences from the changes in life history and population dynamics Texte intégral
2022
Huang, Jing | Li, Yurou | Sun, Yunfei | Zhang, Lu | Lyu, Kai | Yang, Zhou
The salinization of the global freshwater system caused by various human activities and climate change has become a common problem threatening freshwater biodiversity and resources, which may affect a variety of species of cladocerans at individual and population levels. In order to comprehensively evaluate the impact of salinization on different-sized cladocerans at individual and population levels, we exposed two species of cladocerans with obvious body size difference, Daphnia magna and Moina macrocopa, to seven salinities (0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12 M), recorded individual life history traits and population growth dynamics, and used multiple mechanistic models to fit the data. At the individual level, the median effect concentration of survival time, total offspring per female, and number of broods of D. magna were significantly higher than those of M. macrocopa. At the population level, the decrease in carrying capacity of D. magna with increasing salinity was significantly less than that of M. macrocopa. At the same salinity treatment, the integrated biomarker response indexes value of M. macrocopa is higher than that of D. magna. Therefore, it was further inferred that the sensitivity of small-sized species M. macrocopa to salinity stress is significantly higher than that of big-sized species D. magna. Thus, freshwater salinization may result in the replacement of smaller salt-intolerant cladocerans with larger salt-tolerant cladocerans, which may have dramatic effects on freshwater communities and ecosystems. Additionally, the increase of salinity had a greater impact on the population level of D. magna and M. macrocopa than on the individual level, indicating that population level of cladocerans was more susceptible to salinity stress. Experiments only based on individuals may underestimate the ecologically related changes in populations and communities, thus understanding the impact of salinization on freshwater systems needs to consider multiple ecological levels.
Afficher plus [+] Moins [-]Feeding on grains containing pesticide residues is detrimental to offspring development through parental effects in grey partridge Texte intégral
2022
Gaffard, Agathe | Pays, Olivier | Monceau, Karine | Teixeira, Maria | Bretagnolle, Vincent | Moreau, Jérôme
Numerous toxicological studies have shown that ingestion of pesticides can induce physiological stress in breeding birds, with adverse consequences on egg laying parameters and offspring quality through parental effects. However, previous studies do not mimic current levels of pesticide residues in typical landscapes, and they do not consider potential cocktail effects of pesticides as they occur in the wild. Herein, we explored whether realistic pesticide exposure affected reproduction parameters and offspring condition through parental effects in Grey partridge. We fed 24 breeding pairs with either seeds from conventional agriculture crops treated with various pesticides during cropping, or organic grains without pesticide residues as controls. The conventional and organic grain diets mimicked food options potentially encountered by wild birds in the field. The results showed that ingesting low pesticide doses over a long period had consequences on reproduction and offspring quality without altering mortality in parents or chicks. Compared with organic pairs, conventional pairs yielded smaller chicks at hatching that had a lower body mass index at 24 days old. Additionally, these chicks displayed lower haematocrit when body mass index was higher. Therefore, ingestion of conventional grains by parents resulted in chronic exposure to pesticide residues, even at low doses, and this had detrimental consequences on offspring. These results demonstrate a sublethal effect of pesticide residues through parental effects. The consequences of parental exposure on chicks might partly explain the decline in wild Grey partridge populations, which raises questions for avian conservation and demography if current agrosystem approaches are continued.
Afficher plus [+] Moins [-]Effects of life cycle exposure to polystyrene microplastics on medaka fish (Oryzias latipes) Texte intégral
2022
González-Doncel, Miguel | García-Mauriño, José Enrique | Beltrán, Eulalia María | Fernández Torija, Carlos | Andreu-Sánchez, Oscar | Pablos, María Victoria
The number of published studies evaluating the effects of microplastics (MPs) in fish has increased in the last decade. However, of the available studies, few have explored the long-term effects of MPs on fish growth and reproduction and have resorted to MPs in the form of μm-sized beads/microspheres. In this study, 6-10 day-old post-hatch medaka (Oryzias latipes) fish were exposed to 50 (i.e. 1X) and 500 (i.e. 10X) μg of heterogeneously sized and irregularly shaped virgin polystyrene (PS) MP particles (200-μm range)/L for 150 days. These concentrations corresponded to respective daily mean values of 247 and 3087 particles/L administered through the diet. The PS MPs dietary exposure resulted in body burdens of 114 and 440 particles/g fish on day 50, and of 78 and 173 particles/g fish on day 100 since the respective exposures to the 1X and the 10X treatments started. The biometric analyses found no incidence of PS MPs ingestion on overall fish growth and development. The histological survey in the 10X group did not reveal alterations in gills or in the digestive tract. Mild alterations in other organs were seen and included increased fluid material in the peritoneal cavity, glomerular and tubular alterations in kidneys, and differences in the diameter of the thyroid follicles and thickness of the follicular epithelial cells. The initial days of the reproductive phase revealed MP-related differences in the number of gravid females, fecundity, and fertilization rates. Overall, these values reverted to normal rates throughout the succeeding days. No significant effects of PS MPs exposure were evidenced on offspring success. The 150-day PS MPs dietary exposure used in this study provided clues of histological effects and a reproduction delay. However, it did not seem to compromise overall growth/thriving and the ongoing reproduction.
Afficher plus [+] Moins [-]Prenatal exposure to propylparaben at human-relevant doses accelerates ovarian aging in adult mice Texte intégral
2021
Li, Milu | Zhou, Su | Wu, Yaling | Li, Yan | Yan, Wei | Guo, Qingchun | Xi, Yueyue | Chen, Yingying | Li, Yuanyuan | Wu, Meng | Zhang, Jinjin | Wei, Jia | Wang, Shixuan
Embryonic exposure to environmental chemicals may result in specific chronic diseases in adulthood. Parabens, a type of environmental endocrine disruptors widely used in pharmaceuticals and cosmetics, have been shown to cause a decline in women's reproductive function. However, whether exposure to parabens during pregnancy also negatively affect the ovarian function of the female offspring in adulthood remains unclear. This study aims to investigate the effects of prenatal propylparaben (PrP) exposure on the ovarian function of adult mice aged 46 weeks, which is equivalent to the age of 40 years in women. Pregnant ICR mice were intraperitoneally injected with human-relevant doses of PrP (i.e., 0, 7.5, 90, and 450 mg/kg/day) during the fetal sex determination period—from embryonic day E7.5 to E13.5. Our results revealed that ovarian aging was accelerated in PrP-exposed mice at 46 weeks, with altered regularity of the estrous cycle, decreased serum estrogen (E2) and progesterone (P4) levels, reduced size of the primordial follicle pool, and increased number of atretic follicles. It was found that prenatal exposure to human-relevant doses of PrP exacerbated ovarian oxidative stress, inflammation, and fibrosis, which promoted follicular atresia by activating the mitochondrial apoptosis pathway. To compensate, the depletion of primordial follicles was also accelerated by activating the PI3K/AKT/mTOR signaling pathway in PrP-exposed mice. Moreover, PrP induced hypermethylation of CpG sites in the promoter region of Cyp11a1 (a 17.16–64.28% increase) partly led to the disrupted steroidogenesis, and the altered methylation levels of imprinted genes H19 and Peg3 may also contribute to the phenotypes observed. These remarkable findings highlight the embryonic origin of ovarian aging and suggest that a reduced use of PrP during pregnancy should be advocated.
Afficher plus [+] Moins [-]Pre-pregnancy exposure to fine particulate matter (PM2.5) increases reactive oxygen species production in oocytes and decrease litter size and weight in mice Texte intégral
2021
Guo, Yi | Cao, Zhijuan | Jiao, Xianting | Bai, Dandan | Zhang, Yalin | Hua, Jing | Liu, Wenqiang | Teng, Xiaoming
Exposure of females to fine particulate matter ≤2.5 μm in diameter (PM2.5) prior to pregnancy could produce adverse impact on fertility and enhances susceptibility of the offspring to a variety of diseases. In the current study, female C57BL/6 mice (6 weeks of age) were exposed to either concentrated PM2.5 or filtered air (average PM2.5 concentration: 115.60 ± 7.77 vs. 14.07 ± 0.38 μg/m⁻³) using a whole-body exposure device for 12 weeks. Briefly, PM2.5 exposure decreased anti-Müllerian hormone level (613.40 ± 17.36 vs 759.30 ± 21.90 pg mL⁻¹, P<0.01) and increased reactive oxygen species (ROS) level (45.39 ± 0.82 vs 24.20 ± 0.85 arbitrary unit in fluorescence assay, P<0.01) in oocytes. The exposure increased oocyte degeneration rate (21.5% vs 5.1%, respectively (P<0.01) and decreased the 2-cell formation rate (71.9% vs 86.0%, P < 0.01). Transcriptome profiling using RNA sequencing showed wide spectrum of abnormal expression of genes, particularly those involved in regulating the mitochondrial respiratory complex in oocytes and metabolic processes in blastocysts. The exposure decreased litter size (6 ± 0.37 vs 7 ± 0.26, P<0.05) and weight (1.18 ± 0.02 vs 1.27 ± 0.02 g, P<0.01). In summary, PM2.5 exposure decreased female fertility, possibly through increased ROS production in oocytes and metabolic disturbances in developing embryos. The cause-effect relationship, however, requires further investigation.
Afficher plus [+] Moins [-]Phenotypic responses to oil pollution in a poeciliid fish Texte intégral
2021
Santi, Francesco | Vella, Emily | Jeffress, Katherine | Deacon, Amy | Riesch, Rüdiger
Pollution damages ecosystems around the globe and some forms of pollution, like oil pollution, can be either man-made or derived from natural sources. Despite the pervasiveness of oil pollution, certain organisms are able to colonise polluted or toxic environments, yet we only have a limited understanding of how they are affected by it. Here, we analysed phenotypic responses to oil pollution in guppies (Poecilia reticulata) living in oil-polluted habitats across southern Trinidad. We analysed body-shape and life-history traits for 352 individuals from 11 independent populations, six living in oil-polluted environments (including the naturally oil-polluted Pitch Lake), and five stemming from non-polluted habitats. Based on theory of, and previous studies on, responses to environmental stressors, we predicted guppies from oil-polluted waters to have larger heads and shallower bodies, to be smaller, to invest more into reproduction, and to produce more but smaller offspring compared to guppies from non-polluted habitats. Contrary to most of our predictions, we uncovered strong population-specific variation regardless of the presence of oil pollution. Moreover, guppies from oil-polluted habitats were characterised by increased body size; rounder, deeper bodies with increased head size; and increased offspring size, when compared to their counterparts from non-polluted sites. This suggests that guppies in oil-polluted environments are not only subject to the direct negative effects of oil pollution, but might gain some (indirect) benefits from other concomitant environmental factors, such as reduced predation and reduced parasite load. Our results extend our knowledge of organismal responses to oil pollution and highlight the importance of anthropogenic pollution as a source of environmental variation. They also emphasise the understudied ecological heterogeneity of extreme environments.
Afficher plus [+] Moins [-]Parental and trophic transfer of nanoscale plastic debris in an assembled aquatic food chain as a function of particle size Texte intégral
2021
Monikh, Fazel Abdolahpur | Chupani, Latifeh | Vijver, Martina G. | Peijnenburg, Willie J.G.M.
The existing limitations in analytical techniques for characterization and quantification of nanoscale plastic debris (NPD) in organisms hinder understanding of the parental and trophic transfer of NPD in organisms. Herein, we used iron oxide-doped polystyrene (PS) NPD (Fe-PS-NPD) of 270 nm and Europium (Eu)-doped PS-NPD (Eu-PS-NPD) of 640 nm to circumvent these limitations and to evaluate the influence of particle size on the trophic transfer of NPD along an algae-daphnids food chain and on the reproduction of daphnids fed with NPD-exposed algae. We used Fe and Eu as proxies for the Fe-PS-NPD and Eu-Ps-NPD, respectively. The algae cells (Pseudokirchinella subcapitata) were exposed to 4.8 × 10¹⁰ particles/L of Fe-PS-NPD or Eu-PS-NPD for 72 h. A high percentage (>60%) of the NPD was associated with algal cells. Only a small fraction (<11%) of the NPD, however, was transferred to daphnids fed for 21 days on the NPD-exposed algae. The uptake and trophic transfer of the 270 nm Fe-PS-NPD were higher than those for the 640 nm Eu-PS-NPD, indicating that smaller NPD are more likely to transfer along food chains. After exposure to Fe-PS-NPD, the time to first brood was prolonged and the number of neonates per adult significantly decreased compared to the control without any exposure and compared to daphnids exposed to the Eu-Ps-NPD. The offspring of daphnids exposed to Eu-PS-NPD through algae, showed a traceable concentration of Eu, suggesting that NPD are transferred from parents to offspring. We conclude that NPD can be transferred in food chains and caused reproductive toxicity as a function of NPD size. Studies with prolonged exposure and weathered NPD are endeavored to increase environmental realism of the impacts determined.
Afficher plus [+] Moins [-]