Affiner votre recherche
Résultats 1-10 de 24
Redox and global interconnected proteome changes in mice exposed to complex environmental hazards surrounding Doñana National Park
2019
Michán, Carmen | Chicano-Gálvez, Eduardo | Fuentes-Almagro, Carlos A. | Alhama, José
Natural environments are receiving an increasing number of contaminants. Therefore, the evaluation and identification of early responses to pollution in these complex habitats is an urgent and challenging task. Doñana National Park (DNP, SW Spain) has been widely used as a model area for environmental studies because, despite its strictly protected core, it is surrounded by numerous threat sources from agricultural, mining and industrial activities. Since many pollutants often induce oxidative stress, redox proteomics was used to detect redox-based variations within the proteome of Mus spretus mice captured in DNP and the surrounding areas. Functional analysis showed that most differentially oxidized proteins are involved in the maintenance of homeostasis, by eliciting mechanisms to respond to toxic substances and oxidative stress, such as antioxidant and biotransformation processes, immune and inflammatory responses, and blood coagulation. Furthermore, changes in the overall protein abundance were also analysed by label-free quantitative proteomics. The upregulation of phase I and II biotransformation enzymes in mice from Lucio del Palacio may be an alert for organic pollution in the area located at the heart of DNP. Metabolic processes involved in protein turnover (proteolysis, amino acid catabolism, new protein biosynthesis and folding) were activated in response to oxidative damage to these biomolecules. Consequently, aerobic respiratory metabolism increased to address the greater ATP demands. Alterations of cholesterol metabolism that could cause hepatic steatosis were also detected. The proteomic detection of globally altered metabolic and physiological processes offers a complete view of the main biological changes caused by environmental pollution in complex habitats.
Afficher plus [+] Moins [-]High-throughput transcriptomics: Insights into the pathways involved in (nano) nickel toxicity in a key invertebrate test species
2019
Gomes, Susana I.L. | Roca, Carlos P. | Scott-Fordsmand, Janeck J. | Amorim, Mónica J.B.
Nickel nanoparticles (NiNPs) have an estimated production of ca. 20 tons per year in the US. Nickel has been risk-assessed for long in Europe, but not NiNPs, hence the concern for the environment. In the present study, we focused on investigating the mechanisms of toxicity of NiNPs and the comparison to NiNO3. The high-throughput microarray for the soil ecotox model Enchytraeus crypticus (Oligochaeta) was used. To anchor gene to phenotype effect level, organisms were exposed to reproduction effect concentrations EC20 and EC50, for 3 and 7 days. Results showed commonly affected pathways between NiNPs and NiNO3, including increase in proteolysis, apoptosis and inflammatory response, and interference with the nervous system. Mechanisms unique to NiNO3 were also observed (e.g. glutathione synthesis). No specific mechanisms for NiNPs were found, which could indicate that longer exposure period (>7 days) is required to capture the peak response to NiNPs. A mechanisms scheme is assembled, showing both common and unique mechanisms to NiNO3 and NiNPs, providing an important framework for further, more targeted, studies.
Afficher plus [+] Moins [-]Biomethanation and microbial community response during agricultural biomass and shrimp chaff digestion
2021
Gohar, Ali | Ling, Zhenmin | Saif, Irfan | ʻUs̲mān, Muḥammad | Jalalah, Mohammed | Harraz, Farid A. | Al-Assiri, M.S. | Salama, Sayed | Li, Xiangkai
Anaerobic digestion, a promising technology for waste utilization and bioenergy generation, is a suitable approach to convert the shrimp waste to biomethane, reducing its environmental impact. In this study, shrimp chaff (SC) was co-digested corn straw (CS), wheat straw (WS), and sugarcane bagasse (SB). In co-digestion, SC enhanced biomethane production of CS by 8.47-fold, followed by SC + WS (5.67-folds), and SC + SB (3.37-folds). SC addition to agricultural biomass digestion also promoted the volatile solids removal up to 85%. Microbial community analysis of SC and CS co-digestion presented the dominance of phylum Bacteroidetes, Firmicutes, Proteobacteria, and Euryarchaeota. Proteolytic bacteria were dominant (18.02%) during co-digestion of SC and CS, with Proteiniphilum as major bacterial genera (14%) that converts complex proteinaceous substrates to organic acids. Among the archaeal community, Methanosarcina responsible for conversion of acetate and hydrogen to biomethane, increased up to 70.77% in SC and CS digestion. Addition of SC to the digestion of agricultural wastes can significantly improve the biomethane production along with its effective management to reduce environmental risks.
Afficher plus [+] Moins [-]Molecular mechanisms of zooplanktonic toxicity in the okadaic acid-producing dinoflagellate Prorocentrum lima
2021
Gong, Yufeng | Zhang, Keke | Geng, Ningbo | Wu, Minghuo | Yi, Xianliang | Liu, Renyan | Challis, Jonathan K. | Codling, Garry | Xu, Elvis Genbo | Giesy, John P.
Prorocentrum lima is a dinoflagellate that forms hazardous blooms and produces okadaic acid (OA), leading to adverse environmental consequences associated with the declines of zooplankton populations. However, little is known about the toxic effects and molecular mechanisms of P. lima or OA on zooplankton. Here, their toxic effects were investigated using the brine shrimp Artemia salina. Acute exposure of A. salina to P. lima resulted in lethality at concentrations 100-fold lower than densities observed during blooms. The first comprehensive results from global transcriptomic and metabolomic analyses in A. salina showed up-regulated mRNA expression of antioxidant enzymes and reduced non-enzyme antioxidants, indicating general detoxification responses to oxidative stress after exposure to P. lima. The significantly up-regulated mRNA expression of proteasome, spliceosome, and ribosome, as well as the increased fatty acid oxidation and oxidative phosphorylation suggested the proteolysis of damaged proteins and induction of energy expenditure. Exposure to OA increased catabolism of chitin, which may further disrupt the molting and reproduction activities of A. salina. Our data shed new insights on the molecular responses and toxicity mechanisms of A. salina to P. lima or OA. The simple zooplankton model integrated with omic methods provides a sensitive assessment approach for studying hazardous algae.
Afficher plus [+] Moins [-]Global characterization of dose-dependent effects of cadmium in clam Ruditapes philippinarum
2021
Zhan, Junfei | Wang, Shuang | Li, Fei | Ji, Chenglong | Wu, Huifeng
Cadmium (Cd) is being frequently detected in marine organisms. However, dose-dependent effects of Cd challenged unraveling the toxicological mechanisms of Cd to marine organisms and developing biomarkers. Here, the dose-dependent effects of Cd on clams Ruditapes philippinarum following exposure to 5 doses of Cd (3, 9, 27, 81, 243 μg/L) were investigated using benchmark dose (BMD) method. By model fitting, calculation of BMD values was performed on transcriptomic profiles, metals concentrations, and antioxidant indices. Cd exposure induced not only significant Cd accumulation in clams, but also marked alterations of essential metals such as Ca, Cu, Zn, Mn, and Fe. Gene regulation posed little influence on essential metal homeostasis, indicated by poor enrichment of differentially expressed genes (DEGs) associated with metal binding and metal transport in lower concentrations of Cd-treated groups. BMD analysis on biological processes and pathways showed that peptide cross-linking was the most sensitive biological process to Cd exposure, followed by focal adhesion, ubiquitin mediated proteolysis, and apoptosis. Occurrence of apoptosis was also confirmed by TUENL-positive staining in gills and hepatopancreas of clams treated with Cd. Furthermore, many DEGs, such as transglutaminases (TGs), metallothionein (MT), STEAP2-like and laccase, which presented linear or monotonic curves and relatively low BMD values, were potentially preferable biomarkers in clams to Cd. Overall, BMD analysis on transcriptomic profiles, metals concentrations and biochemical endpoints unraveled the sensitiveness of key events in response to Cd treatments, which provided new insights in exploring the toxicological mechanisms of Cd in clams as well as biomarker selection.
Afficher plus [+] Moins [-]Transcriptome, bioaccumulation and toxicity analyses of earthworms (Eisenia fetida) affected by trifloxystrobin and trifloxystrobin acid
2020
Liu, Tong | Liu, Yalei | Fang, Kuan | Zhang, Xiaolian | Wang, Xiuguo
As a promising fungicide, the potential environmental risk of trifloxystrobin (TFS) and its main metabolism trifloxystrobin acid (TFSA) in soil environment should be given special attention. The present study investigated the potential risks of TFS and TFSA in soil environment to earthworms (Eisenia fetida) through measuring several biomarkers. Residual analysis showed that TFSA was more stable than TFS in artificial soil with half-lives ranging from 138.6 to 231.0 d and 20.4–24.7 d, respectively. Additionally, the accumulation of TFS in earthworms increased in the beginning and then decreased from day 14, while that of TFSA continuously increased. At concentrations of 4.0 mg/kg and 10.0 mg/kg, the weight and lysosomal membrane stability of earthworms were reduced; however, the superoxide dismutase (SOD) activity, glutathione-S-transferase (GST) activity and malondialdehyde (MDA) content in earthworms were enhanced by TFS and TFSA. Moreover, the growth inhibition effect and the oxidative damage level induced by TFSA to earthworms were higher than those induced by TFS. The transcriptome analysis date indicated that the differentially expressed genes (DEGs) in both TFS and TFSA treatments were mainly enriched in ribosome pathway and lysosome pathway, finally affecting the protein synthesis and proteolysis in earthworms. The findings of the present study indicated that TFSA may pose a higher risk in the soil environment than TFS.
Afficher plus [+] Moins [-]Response of Rhizobium to Cd exposure: A volatile perspective
2017
Cardoso, Paulo | Santos, Magda | Freitas, Rosa | Rocha, Sílvia M. | Figueira, Etelvina
The volatile metabolome of Rhizobium sp. strain E20-8 exposed to three concentrations of cadmium (2.5, 5.0 and 7.5 μM) was screened using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GC × GC–ToFMS), combined with headspace solid phase microextraction (HS-SPME). Cd exposure induced a global increase in the concentration of volatile organic compounds (VOCs) both intra and extracellularly. Peak areas of several linear alkanes, ketones, aldehydes, alcohols, terpenic and volatile sulfur compounds, and one ester (ethyl acetate), were especially increased when compared with the control condition (no Cd). These compounds might originate from the metabolization of toxic membrane peroxidation products, the proteolysis of oxidized proteins or the alteration of metabolic pathways, resulting from the oxidative stress imposed by Cd. Several VOCs are related to oxidative damage, but the production of VOCs involved in antioxidant response (menthol, α-pinene, dimethyl sulfide, disulfide and trisulfide, 1-butanol and 2-butanone) and in cell aggregation (2,3-butanedione, 3-methyl-1-butanol and 2-butanone) is also observed. These results bring new information that highlights the role of VOCs on bacteria response to Cd stress, identify a novel set of biomarkers related with metal stress and provide information to be applied in biotechnological and remediation contexts.
Afficher plus [+] Moins [-]Impact of milk fish farming in the tropics on potentially pathogenic vibrios
2013
Reichardt, W.T. | Reyes, J.M. | Pueblos, M.J. | Lluisma, A.O.
Ratios of sucrose-negative to sucrose-positive vibrios on TCBS agar (suc−/suc+) indicate the abundance of potential human pathogenic non-cholera vibrios in coastal mariculture environments of the Lingayen Gulf (Philippines. In guts of adult maricultured milkfish (Chanos chanos) of suc− vibrios reached extreme peak values ranging between 2 and 545millionperg wet weight. Suc− vibrios outnumbered suc+ vibrios in anoxic sediments, too, and were rarely predominant in coastal waters or in oxidized sediments. Suc−/suc+ ratios in sediments increased toward the mariculture areas with distance from the open sea at decreasing redox potentials. There is circumstantial evidence that suc− vibrios can be dispersed from mariculture areas to adjacent environments including coral reefs. An immediate human health risk by pathogenic Vibrio species is discounted, since milkfish guts contained mainly members of the Enterovibrio group. A representative isolate of these contained proteolytic and other virulence factors, but no genes encoding toxins characteristic of clinical Vibrio species.
Afficher plus [+] Moins [-]Bioavailability of trace elements in surface sediments from Kongsfjorden, Svalbard
2013
Grotti, Marco | Soggia, Francesco | Ianni, Carmela | Magi, Emanuele | Udisti, Roberto
The bioavailability of trace elements in marine sediments from Kongsfjorden (Svalbard Islands, Norwegian Arctic) was assessed and discussed. Total concentrations of several elements were determined in two granulometric fractions and their bioavailability evaluated by both applying a sequential-selective extraction procedure and using a biomimetic approach based on proteolytic enzymes. Total concentration values and solid speciation patterns indicated overall that the anthropogenic impact of trace elements in the investigated area is negligible, although a minor enrichment with respect to crustal values was found for As, Cd, Cr, Ni, and V. Enrichment of trace elements in the <63-μm fraction compared to the coarser one was evident for As, Cd, Cr, and Ni. The evaluation of the bioavailable fractions showed that a large part of the total content of trace elements cannot enter the aquatic food chain and emphasised the risk of overestimating the environmental impact of heavy metals if the assessment is only based on total concentrations.
Afficher plus [+] Moins [-]Antioxidant enzyme responses and metabolite functioning of Pisum sativum L. to sewage sludge in arid and semi-arid environments
2022
Hakeem, Khalid Rehman | Alharby, Hesham F. | Alghamdi, Khalid M. | Bhat, Rouf Ahmad
The productivity of plants is a direct variant of the countless biotic and abiotic stresses to which a plant is exposed in an environment. This study aimed to investigate the capabilities of leguminous plant garden pea (Pisum sativum L.) to resist water deficit conditions in arid and semi-arid areas when applied with varied doses of sludge for growth response. The effect of sludge doses was evaluated on crop yield, antioxidant enzymes, viz., ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), superoxide dismutase (SOD), and glutathione reductase (GR), and metabolites (ascorbic acid, glutathione, and total protein content). The effective sludge concentrations with respect to seed weight and crop yield were found to be in the following trend: D₂ (6.25%)>D₃ (12.5%)>D₁ (2.5%)>D₀ (control) under organic amendment (OA). Conversely, a high dose of the sludge reduced the seed weight and total crop yield. The sludge doses D₂ under arid and semi-arid conditions along with organic amendments (OA) significantly enhance the antioxidant enzyme activity, whereas sludge dose D₃ with OA ominously regulates the activity of these enzymes. Besides, seeds depicted a considerable increase in ascorbic acid, glutathione, and total protein content in arid and semi-arid conditions upon the application of sludge with OA. Sewage sludge as a source of nutrients indirectly enhances crop yield, antioxidant enzymes, and antioxidant metabolites. Thus, it improves the defense mechanism, reduces abnormal protein glycation, and depletes the susceptibility of protein to proteolysis.
Afficher plus [+] Moins [-]